角形全等的条件⑶(ASA).ppt
,13.2三角形全等的条件,1.什么是全等三角形?,2.判定两个三角形全等要具备什么条件?,复习,三边对应相等的两个三角形全等。,边边边:,边角边:,有两边和它们夹角对应相等的两个三角形全等。,一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形的原貌吗?,怎么办?可以帮帮我吗?,创设情景,实例引入,C,B,E,A,D,先任意画出一个ABC,再画一个A/B/C/,使A/B/=AB,A/=A,B/=B。把画好的A/B/C/剪下,放到ABC上,它们全等吗?,探究1,已知:任意 ABC,画一个 A/B/C/,使A/B/AB,A/=A,B/=B:,画法:,2、在 A/B/的同旁画DA/B/=A,EB/A/=B,A/D,B/E交于点C/。,1、画A/B/AB;,A/B/C/就是所要画的三角形。,问:通过实验可以发现什么事实?,有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)。,探究反映的规律是:,用数学符号表示,例题讲解:,例2.如图,1=2,3=4 求证:AC=AD,在ABC和DEF中,A=D,B=E,BC=EF,ABC与DEF全等吗?能利用角边角条件证明你的结论吗?,探究2,有两角和它们中的一边对应相等的两个三角形全等(简写成“角角边”或“AAS”)。,2.已知,如图,1=2,C=D 求证:AC=AD,证明:,2.已知,如图,1=2,C=D 求证:AC=AD,在ABD和ABC中1=2(已知)D=C(已知)AB=AB(公共边)ABDABC(AAS)AC=AD(全等三角形对应边相等),证明:,(1)学习了角边角、角角边(2)注意角角边、角边角中两角与边的区别。(3)会根据已知两角画三角形(4)进一步学会用推理证明。,小结,布置作业,P104 习题13.2 5、6、11.,