欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    线性代数第一章习题.ppt

    • 资源ID:6597914       资源大小:2.70MB        全文页数:59页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线性代数第一章习题.ppt

    第一章 行列式习题课,一、主要内容,二、典型例题,把 个不同的元素排成一列,叫做这 个元素的全排列(或排列),个不同的元素的所有排列的种数用 表示,且,全排列,逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列,在一个排列 中,若数,则称这两个数组成一个逆序,一个排列中所有逆序的总数称为此排列的逆序数,逆序数,分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,每个元素的逆序数之总和即为所求排列的逆序数,方法2,方法1,分别计算出排在 前面比它大的数码之和,即分别算出 这 个元素的逆序数,这 个元素的逆序数之总和即为所求排列的逆序数,计算排列逆序数的方法,定义,在排列中,将任意两个元素对调,其余元素不动,称为一次对换将相邻两个元素对调,叫做相邻对换,定理,一个排列中的任意两个元素对换,排列改变奇偶性,推论,奇排列调成标准排列的对换次数为奇数,偶排列调成标准排列的对换次数为偶数,对换,n阶行列式的定义,n阶行列式的性质,)余子式与代数余子式,行列式按行(列)展开,)关于代数余子式的重要性质,克拉默法则,克拉默法则的理论价值,定理,定理,定理,定理,一、计算排列的逆序数,二、计算(证明)行列式,三、克拉默法则,典型例题,分别算出排列中每个元素前面比它大的数码之和,即算出排列中每个元素的逆序数,解,例,一、计算排列的逆序数,当 为偶数时,排列为偶排列,,当 为奇数时,排列为奇排列,于是排列的逆序数为,用定义计算(证明),例用行列式定义计算,二、计算(证明)行列式,解,评注本例是从一般项入手,将行标按标准顺序排列,讨论列标的所有可能取到的值,并注意每一项的符号,这是用定义计算行列式的一般方法,注意,例设,证明,由行列式的定义有,评注本题证明两个行列式相等,即证明两点,一是两个行列式有完全相同的项,二是每一项所带的符号相同这也是用定义证明两个行列式相等的常用方法,利用范德蒙行列式计算,例计算,利用范德蒙行列式计算行列式,应根据范德蒙行列式的特点,将所给行列式化为范德蒙行列式,然后根据范德蒙行列式计算出结果。,解,上面等式右端行列式为n阶范德蒙行列式,由范德蒙行列式知,评注本题所给行列式各行(列)都是某元素的不同方幂,而其方幂次数或其排列与范德蒙行列式不完全相同,需要利用行列式的性质(如提取公因子、调换各行(列)的次序等)将此行列式化成范德蒙行列式,用化三角形行列式计算,例计算,解,提取第一列的公因子,得,评注本题利用行列式的性质,采用“化零”的方法,逐步将所给行列式化为三角形行列式化零时一般尽量选含有的行(列)及含零较多的行(列);若没有,则可适当选取便于化零的数,或利用行列式性质将某行(列)中的某数化为1;若所给行列式中元素间具有某些特点,则应充分利用这些特点,应用行列式性质,以达到化为三角形行列式之目的,用降阶法计算,例计算,解,评注本题是利用行列式的性质将所给行列式的某行(列)化成只含有一个非零元素,然后按此行(列)展开,每展开一次,行列式的阶数可降低 1阶,如此继续进行,直到行列式能直接计算出来为止(一般展开成二阶行列式)这种方法对阶数不高的数字行列式比较适用,增加行和列,例,用递推法计算,例计算,解,由此递推,得,如此继续下去,可得,评注,用数学归纳法,例证明,证,对阶数n用数学归纳法,评注,计算行列式的方法比较灵活,同一行列式可以有多种计算方法;有的行列式计算需要几种方法综合应用在计算时,首先要仔细考察行列式在构造上的特点,利用行列式的性质对它进行变换后,再考察它是否能用常用的几种方法,小结,当线性方程组方程个数与未知数个数相等、且系数行列式不等于零时,可用克莱姆法则为了避免在计算中出现分数,可对有的方程乘以适当整数,把原方程组变成系数及常数项都是整数的线性方程组后再求解,三、克拉默法则,解,设所求的二次多项式为,由题意得,由克莱姆法则,得,于是,所求的多项式为,例11有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克;乙种化肥每千克含氮64克,磷10克,钾0.6克;丙种化肥每千克含氮70克,磷5克,钾1.4克若把此三种化肥混合,要求总重量23千克且含磷149克,钾30克,问三种化肥各需多少千克?,解,例12,解,

    注意事项

    本文(线性代数第一章习题.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开