线性代数复旦版-5-习题课.ppt
习 题 课,1.求下列矩阵的特征值与特征向量.,2.判定下列矩阵是否相似于对角矩阵,若相似,则求出可逆矩阵 P,使 P-1AP 是对角矩阵.,3.设,相似于对角矩阵,求 x与 y 应满足的条件.,4.已知矩阵,与矩阵,相似.,(1)求 x 与 y;(2)求可逆矩阵 P,使 P-1AP=B.,5.设 3 阶矩阵 A 的特征值为,对应的特征向量依次为,又向量 b=(1,1,3)T,(1)求 A;(2)将 b 用 p1,p2,p3 线性表示;(3)求 Anb;(4)求 A100.,6.若 是方阵 A 的特征值,p 是相对应的特征向量,证明:,(1),是方阵,的特征值,且 p 是相应的特征向量.,(2)如果 A 可逆,则,是,的特征值,,是,的特征值,且 p 仍是相应的特征向量.,7.设四阶方阵 A 满足|3E+A|=0,AAT=2E,|A|0,求 A-1 及 A*的一个特征值.,8.设 A 是正交矩阵,且|A|0,求|A|、|A+E|.,9.已知,求满足关系式,X2=A的实对称矩阵 X.,10.用正交变换法化下列二次型为标准形:,11.用配方法将下列二次型化为标准形,并写出标准形及所用的线性变换.,12.用初等变换法化下列二次型为标准形,并写出其标准形及所用的线性变换.,13.判断下列二次型是否正定.,14.求参数 t 的值,使二次型,为正定二次型.,15.已知实对称矩阵 A 满足,判断 A 的正定性.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,本节内容已结束!若想结束本堂课,请单击返回按钮.,