欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    期权期货及其衍生品第12弹.ppt

    • 资源ID:6583436       资源大小:439.50KB        全文页数:26页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    期权期货及其衍生品第12弹.ppt

    Chapter 12Binomial Trees,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,1,A Simple Binomial Model,A stock price is currently$20In 3 months it will be either$22 or$18,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,2,A Call Option(Figure 12.1,page 254),A 3-month call option on the stock has a strike price of 21.,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,3,Stock Price=$18Option Price=$0,Setting Up a Riskless Portfolio,For a portfolio that is long D shares and a short 1 call option values arePortfolio is riskless when 22D 1=18D or D=0.25,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,4,Valuing the Portfolio(Risk-Free Rate is 12%),The riskless portfolio is:long 0.25 sharesshort 1 call optionThe value of the portfolio in 3 months is 22 0.25 1=4.50The value of the portfolio today is 4.5e0.120.25=4.3670,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,5,Valuing the Option,The portfolio that is long 0.25 sharesshort 1 option is worth 4.367The value of the shares is 5.000(=0.25 20)The value of the option is therefore 0.633(5.000 0.633=4.367),Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,6,Generalization(Figure 12.2,page 255),A derivative lasts for time T and is dependent on a stock,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,7,Generalization(continued),Value of a portfolio that is long D shares and short 1 derivative:The portfolio is riskless when S0uD u=S0dD d or,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,8,S0uD u,S0dD d,Generalization(continued),Value of the portfolio at time T is S0uD uValue of the portfolio today is(S0uD u)erTAnother expression for the portfolio value today is S0D fHence=S0D(S0uD u)erT,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,9,Generalization(continued),Substituting for D we obtain=pu+(1 p)d erT where,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,10,p as a Probability,It is natural to interpret p and 1-p as probabilities of up and down movementsThe value of a derivative is then its expected payoff in a risk-neutral world discounted at the risk-free rate,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,11,Risk-Neutral Valuation,When the probability of an up and down movements are p and 1-p the expected stock price at time T is S0erTThis shows that the stock price earns the risk-free rateBinomial trees illustrate the general result that to value a derivative we can assume that the expected return on the underlying asset is the risk-free rate and discount at the risk-free rateThis is known as using risk-neutral valuation,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,12,Original Example Revisited,p is the probability that gives a return on the stock equal to the risk-free rate:20e 0.12 0.25=22p+18(1 p)so that p=0.6523Alternatively:,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,13,Valuing the Option Using Risk-Neutral Valuation,The value of the option is e0.120.25(0.65231+0.34770)=0.633,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,14,Irrelevance of Stocks Expected Return,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,15,When we are valuing an option in terms of the price of the underlying asset,the probability of up and down movements in the real world are irrelevantThis is an example of a more general result stating that the expected return on the underlying asset in the real world is irrelevant,A Two-Step ExampleFigure 12.3,page 260,K=21,r=12%Each time step is 3 months,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,16,Valuing a Call OptionFigure 12.4,page 260,Value at node B=e0.120.25(0.65233.2+0.34770)=2.0257Value at node A=e0.120.25(0.65232.0257+0.34770)=1.2823,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,17,A Put Option ExampleFigure 12.7,page 263,K=52,time step=1yrr=5%,u=1.32,d=0.8,p=0.6282,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,18,What Happens When the Put Option is American(Figure 12.8,page 264),Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,19,The American feature increases the value at node C from 9.4636 to 12.0000.This increases the value of the option from 4.1923 to 5.0894.,Delta,Delta(D)is the ratio of the change in the price of a stock option to the change in the price of the underlying stockThe value of D varies from node to node,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,20,Choosing u and d,One way of matching the volatility is to setwhere s is the volatility and Dt is the length of the time step.This is the approach used by Cox,Ross,and Rubinstein,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,21,Girsanovs Theorem,Volatility is the same in the real world and the risk-neutral worldWe can therefore measure volatility in the real world and use it to build a tree for the an asset in the risk-neutral world,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,22,Assets Other than Non-Dividend Paying Stocks,For options on stock indices,currencies and futures the basic procedure for constructing the tree is the same except for the calculation of p,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,23,The Probability of an Up Move,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,24,Proving Black-Scholes-Merton from Binomial Trees(Appendix to Chapter 12),Option is in the money when j a where so that,25,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,Proving Black-Scholes-Merton from Binomial Trees continued,The expression for U1 can be writtenwhere Both U1 and U2 can now be evaluated in terms of the cumulative binomial distributionWe now let the number of time steps tend to infinity and use the result that a binomial distribution tends to a normal distribution,26,Options,Futures,and Other Derivatives,8th Edition,Copyright John C.Hull 2012,

    注意事项

    本文(期权期货及其衍生品第12弹.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开