数学八年级上人教新课标第12章轴对称复习课件.ppt
第十二章 轴对称,小结与复习,知识点回顾,一、轴对称相关定义和性质二、垂直平分线的性质及判定三、坐标中的轴对称四、等腰三角形的性质及判定五、等边三角形的性质及判定六、作图,把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做_对称点_.,一.轴对称图形,1、轴对称图形:,2、轴对称:,轴对称的性质:,关于某直线对称的两个图形是全等形。如果两个图形关于某条直线对称,那么对称轴是 任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。,ABC与DEF关于直线L成轴对称,则C是多少度?,L,650,750,1、线段垂直平分线定义,经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。,2、线段垂直平分线性质,线段垂直平分线上的点与这条线段的两个端点的距离相等3、垂直平分线的判定,二.线段的垂直平分线,到线段两个端点距离相等的点,在线段的垂直平分线上。,.如图:在ABC中,DE是AC的垂直平分线,AC=5厘米,ABD的周长等于13厘米,则ABC的周长是。,A,B,D,E,C,18厘米,5.如图,在RtABC中,C=90,DE是AB的垂直平分线,连接AE,CAE:DAE=1:2,求B的度数。,三.用坐标表示轴对称小结:关于x轴对称:横坐标相等,纵坐标互为相反数.关于y轴对称:横坐标互为相反数,纵坐标相等.,点(x,y)关于x轴对称的点的坐标为_.点(x,y)关于y轴对称的点的坐标为_.,(x,y),(x,y),点(x,y)关于一、三象限角平分线对称坐标(y,x)点(x,y)关于二、四象限角平分线对称点坐标(-y,-x),若两点(x1,y1)、(x2,y2)关于直线y=n对称,则;,归纳:若两点(x1,y1)、(x2,y2)关于 直线x=m对称,则;,y1=y2,x1=x2,X2=2m-x1,y2=2n-y1,(m=),(n=),已知点P(2a+b,-3a)与点P(8,b+2).若点p与点p关于x轴对称,则a=_b=_.若点p与点p关于y轴对称,则a=_b=_,四、等腰三角形,1.等腰三角形的性质.等腰三角形的两个底角相等。(等边对等角).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边),五、等边三角形性质和判定,1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。2、等边三角形的判定:三个角都相等的三角形是等边三角形。有一个角是600的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。,2、“有一个等腰三角形的两条边长分别是4cm和8cm,则周长为,20cm,3、若等腰三角形的一个角为400,则另外两个角的度数为,700,700 或 400,1000,六、作图,1、垂直平分线2、作对称点3、在直线上找一点使得到两点距离和最短,距离差最长,例:已知ABC的三个顶点的坐标分别为A(-3,5),B(-4,1),C(-1,3),作出ABC关于y轴对称的图形。,解:点A(-3,5),B(-4,1),C(-1,3),关于y轴对称点的坐标分别为A(3,5),B(4,1),C(1,3).依次连接AB,BC,CA,就得到ABC关于y轴对称的ABC.,A,B,A,C,归纳:(P44)先求出已知图形中的 特殊点(如多边形的顶点或端点)的对应点的坐标,描出并连接这些点,就可 得到这个图形的轴对称图形.,x,y,1.有A、B、C三个村庄,现准备要建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置。,A,B,C,