欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    排列组合二项式.ppt

    • 资源ID:6575240       资源大小:547KB        全文页数:32页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    排列组合二项式.ppt

    1.排列和组合的区别和联系:,从n个不同元素中取出m个元素,按一定的顺序排成一列,从n个不同元素中取出m个元素,把它并成一组,所有排列的的个数,所有组合的个数,解决排列组合综合性问题的一般过程如下:,1.认真审题弄清要做什么事,2.怎样做才能完成所要做的事,即采取分步还 是分类,或是分步与分类同时进行,确定分多 少步及多少类。,3.确定每一步或每一类是排列问题(有序)还是 组合(无序)问题,元素总数是多少及取出多 少个元素.,解决排列组合综合性问题,往往类与步交 叉,因此必须掌握一些常用的解题策略,(三)、常用解题方法及适用题目类型,直接法:特殊元素法、特殊位置法(两者适用某一个或几个元素在指定的位置或不在指定的位置)、捆绑法(两个或两个以上的元素必须相邻)、插空法(两个或两个以上的元素必须不相邻)隔板法(相同的元素分成若干部分,每部分至少一个)及分组问题.间接法(排除法),优化190页,(八)住店法188页,解决“允许重复排列问题”要注意区分两类元素:,一类元素可以重复,另一类不能重复,把不能重复的元素看作“客人”,能重复的元素看作“店”,再利用乘法原理直接求解。,例9 七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有(),A.B.C D.,分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客人”,每个“客人”有7种住宿法,由乘法原理得 种。,注:对此类问题,常有疑惑,为什么不是 呢?,用分步计数原理看,5是步骤数,自然是指数。,练习:,(1)把4个不同的小球放入3个分别标有13号的盒子中,允许有空盒子的放法有多少种?(2)将4封信全部投入3个邮筒,可以随意投,有多少种不同的投法?,例6 有4名男生,3名女生。3名女生高矮互不等,将7名学生排成一行,要求从左到右,女生从矮到高排列,有多少种排法?,(五)189页-例2顺序固定问题用“除法”,对于某几个元素顺序一定的排列问题,可先将这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数.,所以共有 种。,分析:先在7个位置上作全排列,有 种排法。其中3个女生因要求“从矮到高”排,只有一种顺序故 只对应一种排法,,(六)分排问题用“直排法”,把n个元素排成若干排的问题,若没有其他的特殊要求,可采用统一排成一排的方法来处理.,例7 七人坐两排座位,第一排坐3人,第二排坐4人,则有多少种不同的坐法?,分析:7个人,可以在前后排随意就坐,再无其他限制条件,故两排可看作一排处理,所以不同的坐法有 种.,(1)三个男生,四个女生排成两排,前排三人、后排四人,有几种不同排法?,或:七个人可以在前后两排随意就坐,再无其他条件,所以,两排可看作一排来处理不同的坐法有 种,(2)八个人排成两排,有几种不同排法?,练 习 6,八.排列组合混合问题先选后排策略,例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装 法.,解:第一步从5个球中选出2个组成复合元共 有_种方法.再把5个元素(包含一个复合 元素)装入4个不同的盒内有_种方法.,根据分步计数原理装球的方法共有_,例2:3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少?,解法一:首先,将3名医生分配到3所学校,每校1名,不同的分配方法有A33种;,其次,将6名护士分配到3所学校,每校2名,不同的分配方法有C62C42C22种;,由分步计数原理,共有A33 C62C42C22 540种,“先选后排”法,十.元素相同问题隔板策略,例10.有10个运动员名额,在分给7个班,每班至少一个,有多少种分配方案?,解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。,在个空档中选个位置插个隔板,可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法共有_种分法。,将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为,例5:从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?,分析:问题相当于把30个相同的球放入6个不同盒子(盒子不能空的)有几种放法?这类问题可用“隔板法”处理.,小结:把n个相同元素分成m份,每份至少1个元素,问有多少种不同分法的问题可以采用“隔板法”.共有:,十四.构造模型策略,例14.马路上有编号为1,2,3,4,5,6,7,8,9的 九只路灯,现要关掉其中的3盏,但不能关 掉相邻的2盏或3盏,也不能关掉两端的2 盏,求满足条件的关灯方法有多少种?,解:把此问题当作一个排队模型在6盏 亮灯的5个空隙中插入3个不亮的灯 有_ 种,一排10个座位,有7个座位有人座,每个座位上都有1人,现空出3个座位,但两端的座位不空,且空出的座位不能有2个或3个相连,求不同的空位方式有几种?,练习4 某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()(A)种(B)种(C)种(D)种,解:,练习3:9件不同的玩具,按下列方案有几种分法?1.甲得2件,乙得3件,丙得4件,有多少种分法?2.一人得2件,一人得3件,一人得4件,有多少种分法?3.每人3件,有多少种分法?4.平均分成三堆,有多少种分法?5.分为2、2、2、3四堆,有多少种分法?,解:,例3:有6本不同的书,分成3堆.(1)如果每堆2本,有多少种分法?(2)如果分成一堆1本,一堆2本,一堆3本,有多少种分法?,分析:这与例2不同,区别在于把 6本不同的书分给甲、乙、丙3人,每人2本,相当于把6本不同的书先分成3堆,再把分得的3堆分给甲、乙、丙3人.,例3:有6本不同的书,分成4堆.(3)如果一堆3本,其余各堆各1本,有多少种分法?(4)如果每堆至多2本,至少1本,有多少种分法?,引申:分成甲、乙、丙三组,一组4人,一组3 人,一组2人;,分成甲、乙、丙三组,每组3人.,9人分成甲、乙、丙三组,甲组4人,乙组3人,丙组2人;,分成三组,每组3人;,引申:分成三组,一组5人,另两组各两人;,点评:局部均分无序问题易出错.,这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(+b)n的,其中(k0,1,2,n)叫做,叫做二项展开式的通项,用 Tk+1 表示,该项是展开式的第 项,展开式共有_项.,展开式,二项式系数,k+1,n+1,二项式定理:,一般地,对于n N*有,分析:,解:,二项式系数的性质,2二项式系数的性质,(1)对称性,与首末两端“等距离”的两个二项式系数相等,这一性质可直接由公式 得到,图象的对称轴:,(1)二项式系数的三个性质:,(2)数学思想:函数思想。,二项式系数之和:,最 值:,当n是偶数时,中间的一项 取得最大时;,当n是奇数时,中间的两项,相等,且同时取得最大值。,增减性:,系数性质,即,例1.下面二项展开式中,哪些项的二项式系数最大?是多少?填在相应的横线上(1)(a+b)20 第 项的二项式系数最大,是.(2)(a+b)19 第 项的二项式系数最大,是;,10、11,11,例4、若 的展开式中,所有奇数项 的系数之和为1024,求它的中间项.,解:展开式中各项的二项式系数与该项的 的系数相等,由已知可得:2n-1=1024,解得 n=11,有两个中间项分别为,T6=462x-4,T7=462x,解:设,展开式各项系数和为,1,注意:求展开式中各项系数和常用赋值法:令二项式中的字母为1,上式是恒等式,所以当且仅当x=1时,(2-1)n=,=(2-1)n=1,例8.的展开式的各项系数和为_,例题讲解,解:,设 项是系数最大的项,则,二项式系数最大的项为第11项,即,所以它们的比是,例题讲解,例1 计算并求值,解(1):将原式变形,例1 计算并求值,解:(2)原式,样本的频率分布直方图,作样本频率分布直方图的步骤:,(1)求极差;,(2)决定组距与组数;(组数极差/组距),(3)将数据分组;,(4)列频率分布表(分组,频数,频率);,(5)画频率分布直方图。,

    注意事项

    本文(排列组合二项式.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开