欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    抽样与抽样分布(袁卫).ppt

    • 资源ID:6575043       资源大小:309KB        全文页数:30页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    抽样与抽样分布(袁卫).ppt

    第 4 章 抽样与抽样分布,4.1 常用的抽样方法 4.2 抽样分布4.3 中心极限定理的应用,学习目标,了解抽样的概率抽样方法理解抽样分布的意义了解抽样分布的形成过程理解中心极限定理理解抽样分布的性质,4.1 常用的抽样方法,一、简单随机抽样二、分层抽样三、系统抽样四、整群抽样,抽样方法,概率抽样(probability sampling),根据一个已知的概率来抽取样本单位,也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的 当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率,简单随机抽样(simple random sampling),从总体N个单位中随机地抽取n个单位作为样本,使得每一个容量为样本都有相同的机会(概率)被抽中 抽取元素的具体方法有重复抽样和不重复抽样特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其他辅助信息以提高估计的效率,分层抽样(stratified sampling),将总体单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计,系统抽样(systematic sampling),将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按事先规定好的规则确定其他样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难,整群抽样(cluster sampling),将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差,4.2 抽样分布与中心极限定理,一、抽样分布的概念二、样本均值抽样分布的形式三、样本均值抽样分布的特征四、中心极限定理,抽样分布的概念,样本统计量的概率分布,是一种理论分布在重复选取容量为n的样本时,由该统计量的所有可能取值形成的相对频数分布 随机变量是 样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远而稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据,抽样分布(sampling distribution),抽样分布的形成过程(sampling distribution),样本均值的抽样分布,在重复选取容量为n的样本时,由样本均值的所有可能取值形成的相对频数分布一种理论概率分布推断总体均值的理论基础,样本均值的抽样分布,样本均值的抽样分布(例题分析),【例】设一个总体,含有4个元素(个体),即总体单位数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4。总体的均值、方差及分布如下,均值和方差,样本均值的抽样分布(例题分析),现从总体中抽取n2的简单随机样本,在重复抽样条件下,共有42=16个样本。所有样本的结果为,样本均值的抽样分布(例题分析),计算出各样本的均值,如下表。并给出样本均值的抽样分布,样本均值的分布与总体分布的比较(例题分析),=2.5 2=1.25,总体分布,中心极限定理,样本均值的抽样分布与中心极限定理,当总体服从正态分布N(,2)时,来自该总体的所有容量为n的样本的均值x也服从正态分布,x 的数学期望为,方差为2/n。即xN(,2/n),中心极限定理(central limit theorem),中心极限定理:设从均值为,方差为 2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为、方差为2/n的正态分布,中心极限定理(central limit theorem),x 的分布趋于正态分布的过程,样本均值的数学期望样本均值的方差重复抽样不重复抽样,样本均值的抽样分布(数学期望与方差),样本均值的抽样分布(数学期望与方差),比较及结论:1.样本均值的均值(数学期望)等于总体均值 2.样本均值的方差等于总体方差的1/n,抽样分布与总体分布的关系,总体分布,正态分布,非正态分布,大样本,小样本,正态分布,正态分布,非正态分布,4.3 抽样分布的性质 无偏性与最小方差,无偏性(unbiasedness),无偏性:估计量抽样分布的数学期望等于被 估计的总体参数,有效性(efficiency),有效性:对同一总体参数的两个无偏点估计 量,有更小标准差的估计量更有效,本章小结,了解抽样的概率抽样方法理解抽样分布的意义了解抽样分布的形成过程理解中心极限定理理解抽样分布的性质,

    注意事项

    本文(抽样与抽样分布(袁卫).ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开