学习情境三(总14-15).ppt
学习情境三 主要内容 电感电容元件及暂态分析,3.2 电容及其联接,3.1电磁感应及电感,3.3线性 一阶电路的暂态分析,学习情境三,【学习目标】1能理解电感L的物理意义及其储存的磁场能,并能对电感元件进行识别与检测;2掌握电感元件电压与电流的基本关系;3能理解电容的物理意义及其储存的电场能,并能对电容元件进行识别与检测;4掌握电容元件电压与电流的基本关系,初步会分析电容的联接;【重点难点】1电感、电容的伏安关系及检测;2三要素法。,本堂课的任务:电感 电容及其检测,电感、电容元件的伏安关系,电容耐压值计算,重点,难点,难点,电阻、电容、电感元件及其特性,复习:电阻元件,二端电阻元件的 u、i 关系可由 u i 平面的一条曲线(伏安特性曲线)确定。,(电阻元件的电压与电流的约束关系,简称VCR),线性电阻,关联参考方向:,或,0,u,i,G 电导,单位:西门子(S),非关联参考方向:,伏安特性,描述线圈通有电流时产生磁场、储存磁场能量的性质。,1.物理意义,一、电感元件,线圈的电感与线圈的尺寸、匝数以及附近的介质的导磁性能等有关。,活动(一)电感元件及其检测,自感电动势:,根据基尔霍夫定律可得:,2.伏安关系,(3)电感元件储能,根据基尔霍夫定律可得:,将上式两边同乘上 i,并积分,则得:,即电感将电能转换为磁场能储存在线圈中,当电流增大时,磁场能增大,电感元件从电源取用电能;当电流减小时,磁场能减小,电感元件向电源放还能量。,磁场能,(4)电感线圈的检测,1)外观检查2)通断检测3)绝缘检测,【例3-1-1】如图3-1-7所示电路,已知电压US1=10V,US2=5V,电阻R1=5,R2=10,电感L=0.1H,求电压U1、U2及电感元件储存的磁场能。图3-1-7【例3-1-1】图,二、电容元件,描述电容两端加电源后,其两个极板上分别聚集起等量异号的电荷,在介质中建立起电场,并储存电场能量的性质。,电容:,电容器的电容与极板的尺寸及其间介质的介电常数等关。,当电压u变化时,在电路中产生电流:,电容元件储能,将上式两边同乘上 u,并积分,则得:,即电容将电能转换为电场能储存在电容中,当电压增大时,电场能增大,电容元件从电源取用电能;当电压减小时,电场能减小,电容元件向电源放还能量。,电场能,根据:,4.电容的检测,电容器好坏的检测,【例3-1-2】主观题:如图3-1-15所示电路中,直流电流源的电流不变,F,电路已经稳定,试求电容的电压和电场储能。,活动(三)电容器联接测试,一、电容器串联(1)等效电容,(2)每个电容器实际承受的电压与电容关系二、电容器的并联(1)每个电容器两极板所带的电量与电容关系,(2)等效电容【例3-1-2】主观题:A、B两电容器参数分别为200pF/500V,300pF/900V,将它们串联。求:(1)等值电容C;(2)加上1000V电压时,是否会被击穿?(3)此电容器组的最大耐压值。,任务2 延时电路的测试,学习目标1了解暂态电路的概念,能正确表达电感电容元件的换路定律并会计算电路的初始值;2能理解并会计算一阶线性电路的时间常数;3会应用三要素法求解直流电源激励下一阶线性电路的过渡过程;4了解微积分电路的特点及其工作过程。5会用示波器观测电容的充放电。,工作任务1测定时间常数;2延时电路的调试;3微积分电路的调试。,本堂课的任务:一阶线性电路的过渡过程,换路定律、三要素法,三要素求解,重点,难点,难点,教学要求:,稳定状态:在指定条件下电路中电压、电流已达到稳定值。,暂态过程:电路从一种稳态变化到另一种稳态的过渡过程。,1.理解电路的暂态和稳态、零输入响应、零状 态响应、全响应的概念,以及时间常数的物 理意义。2.掌握换路定则及初始值的求法。3.掌握一阶线性电路分析的三要素法。,电路的暂态分析,电路暂态分析的内容,1.利用电路暂态过程产生特定波形的电信号 如锯齿波、三角波、尖脉冲等,应用于电子电路。,研究暂态过程的实际意义,2.控制、预防可能产生的危害 暂态过程开始的瞬间可能产生过电压、过电流使 电气设备或元件损坏。,(1)暂态过程中电压、电流随时间变化的规律。,直流电路、交流电路都存在暂态过程,我们讲课的重点是直流电路的暂态过程。,(2)影响暂态过程快慢的电路的时间常数。,一、换路定律与电压和电流初始值的确定,1.电路中产生暂态过程的原因,电流 i 随电压 u 比例变化。,合S后:,所以电阻电路不存在暂态过程(R耗能元件)。,图(a):合S前:,例:,2 换路定律与初始值的确定,图(b),所以电容电路存在暂态过程,uC,合S前:,暂态,稳态,产生暂态过程的必要条件:,L储能:,换路:电路状态的改变。如:,电路接通、切断、短路、电压改变或参数改变,C 储能:,产生暂态过程的原因:由于物体所具有的能量不能跃变而造成,在换路瞬间储能元件的能量也不能跃变,(1)电路中含有储能元件(内因)(2)电路发生换路(外因),电容电路:,注:换路定则仅用于换路瞬间来确定暂态过程中 uC、iL初始值。,2.换路定律,电感电路:,3.初始值的确定,求解要点:,(2)其它电量初始值的求法。,初始值:电路中各 u、i 在 t=0+时的数值。,(1)uC(0+)、iL(0+)的求法。,1)先由t=0-的电路求出 uC(0)、iL(0);,2)根据换路定律求出 uC(0+)、iL(0+)。,1)由t=0+的电路求其它电量的初始值;,2)在 t=0+时的电压方程中 uC=uC(0+)、t=0+时的电流方程中 iL=iL(0+)。,暂态过程初始值的确定,例1,由已知条件知,根据换路定则得:,已知:换路前电路处稳态,C、L 均未储能。试求:电路中各电压和电流的初始值。,二、RC电路的响应,一阶电路暂态过程的求解方法,1.经典法:根据激励(电源电压或电流),通过求解电路的微分方程得出电路的响应(电压和电流)。,2.三要素法,仅含一种储能元件的线性电路,且由一阶微分方程描述,称为一阶线性电路。,一阶电路,求解方法,代入上式得,换路前电路已处稳态,(1)列 KVL方程,1.电容电压 uC 的变化规律(t 0),零输入响应:无电源激励,输入信号为零,仅由电容元件的初始储能所产生的电路的响应。,图示电路,实质:RC电路的放电过程,1 RC电路的零输入响应,(2)解方程:,特征方程,由初始值确定积分常数 A,齐次微分方程的通解:,电容电压 uC 从初始值按指数规律衰减,衰减的快慢由RC 决定。,(3)电容电压 uC 的变化规律,电阻电压:,放电电流,电容电压,2.电流及电阻电压的变化规律,3.、变化曲线,4.时间常数,(2)物理意义,令:,单位:S,(1)量纲,当 时,时间常数 决定电路暂态过程变化的快慢,越大,曲线变化越慢,达到稳态所需要的时间越长。,时间常数 的物理意义,U,当 t=5 时,过渡过程基本结束,uC达到稳态值。,(3)暂态时间,理论上认为、电路达稳态,工程上认为、电容放电基本结束。,随时间而衰减,2 RC电路的零状态响应,零状态响应:储能元件的初始能量为零,仅由电源激励所产生的电路的响应。,实质:RC电路的充电过程,分析:在t=0时,合上开关s,此时,电路实为输入一 个阶跃电压u,如图。与恒定电压不同,其,电压u表达式,一阶线性常系数非齐次微分方程,方程的通解=方程的特解+对应齐次方程的通解,1.uC的变化规律,(1)列 KVL方程,(2)解方程,求特解:,方程的通解:,求对应齐次微分方程的通解,微分方程的通解为,确定积分常数A,根据换路定则在 t=0+时,,(3)电容电压 uC 的变化规律,暂态分量,稳态分量,电路达到稳定状态时的电压,仅存在于暂态过程中,3.、变化曲线,当 t=时,表示电容电压 uC 从初始值上升到 稳态值的63.2%时所需的时间。,2.电流 iC 的变化规律,4.时间常数 的物理意义,为什么在 t=0时电流最大?,3 RC电路的全响应,1.uC 的变化规律,全响应:电源激励、储能元件的初始能量均不为零时,电路中的响应。,根据叠加定理 全响应=零输入响应+零状态响应,稳态分量,零输入响应,零状态响应,暂态分量,结论2:全响应=稳态分量+暂态分量,全响应,结论1:全响应=零输入响应+零状态响应,稳态值,初始值,当 t=5 时,暂态基本结束,uC 达到稳态值。,稳态解,初始值,4 一阶线性电路暂态分析的三要素法,仅含一个储能元件或可等效为一个储能元件的线性电路,且由一阶微分方程描述,称为一阶线性电路。,据经典法推导结果,全响应,uC(0-)=Uo,s,R,U,+,_,C,+,_,i,uc,:代表一阶电路中任一电压、电流函数,式中,在直流电源激励的情况下,一阶线性电路微分方程解的通用表达式:,利用求三要素的方法求解暂态过程,称为三要素法。一阶电路都可以应用三要素法求解,在求得、和 的基础上,可直接写出电路的响应(电压或电流)。,电路响应的变化曲线,三要素法求解暂态过程的要点,(1)求初始值、稳态值、时间常数;,(3)画出暂态电路电压、电流随时间变化的曲线。,(2)将求得的三要素结果代入暂态过程通用表达式;,求换路后电路中的电压和电流,其中电容 C 视为开路,电感L视为短路,即求解直流电阻性电路中的电压和电流。,(1)稳态值 的计算,响应中“三要素”的确定,1)由t=0-电路求,在换路瞬间 t=(0+)的等效电路中,注意:,(2)初始值 的计算,1)对于简单的一阶电路,R0=R;,2)对于较复杂的一阶电路,R0为换路后的电路除去电源和储能元件后,在储能元件两端所求得的无源二端网络的等效电阻。,(3)时间常数 的计算,对于一阶RC电路,对于一阶RL电路,注意:,R0的计算类似于应用戴维宁定理解题时计算电路等效电阻的方法。即从储能元件两端看进去的等效电阻,如图所示。,例1:,电路如图,t=0时合上开关S,合S前电路已处于稳态。试求电容电压 和电流、。,(1)确定初始值,由t=0-电路可求得,由换路定则,应用举例,(2)确定稳态值,由换路后电路求稳态值,(3)由换路后电路求 时间常数,uC 的变化曲线如图,用三要素法求,用三要素法求解,解:,已知:S 在t=0时闭合,换路前电路处于稳态。求:电感电流,例:,由t=0等效电路可求得,(1)求uL(0+),iL(0+),由t=0+等效电路可求得,(2)求稳态值,由t=等效电路可求得,(3)求时间常数,稳态值,iL,uL变化曲线,