欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    复变函数与积分变换第8.2单位脉冲函数.ppt

    • 资源ID:6560318       资源大小:2.24MB        全文页数:18页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    复变函数与积分变换第8.2单位脉冲函数.ppt

    8.2 单位脉冲函数及广义傅氏变换,在物理和工程技术中,常常会碰到单位脉冲,冲击力作用后的运动情况等.研究此类问题就会,函数.因为有许多物理现象具有脉冲性质,如在电,学中,要研究线性电路受具有脉冲性质的电势作,用后产生的电流;在力学中,要研究机械系统受,产生我们要介绍的单位脉冲函数.,在原来电流为零的电路中,某一瞬时(设为t=0)进入一单位电量的脉冲,现在要确定电路上的电流i(t).以q(t)表示上述电路中的电荷函数,则,当t0时,i(t)=0,由于q(t)是不连续的,从而在普通导数意义下,q(t)在这一点是不能求导数的.,如果我们形式地计算这个导数,则得,这表明在通常意义下的函数类中找不到一个函数能够表示这样的电流强度.为了确定这样的电流强度,引进一称为狄利克雷(Dirac)的函数,简单记成d-函数:,有了这种函数,对于许多集中于一点或一瞬时的量,例如点电荷,点热源,集中于一点的质量及脉冲技术中的非常窄的脉冲等,就能够象处理连续分布的量那样,以统一的方式加以解决.,(在极限与积分可交换意义下),工程上将d-函数称为单位脉冲函数。,可将d-函数用一个长度等于1的有向线段表示,这个线段的长度表示d-函数的积分值,称为d-函数的强度.,d-函数有筛选性质:,可见d-函数和任何连续函数的乘积在实轴上的积分都有明确意义。,因为d 函数是广义函数,所以其Fourier变换不,是通常意义下的Fourier 变换.根据Fourier 变换的,定义,以及d 函数的性质,可 得,通常,没有意义.然而由,在广义函数意义下,证法2:若F(w)=2pd(w),由傅氏逆变换可得,例1 证明:1和2pd(w)构成傅氏变换对.,证法1:,由上面两个函数的变换可得,例如常数,符号函数,单位阶跃函数以及正,余弦函数等,然而它们的广义傅氏变换也是存在的,利用单位脉冲函数及其傅氏变换就可以求出它们的傅氏变换.所谓广义是相对于古典意义而言的,在广义意义下,同样可以说,原象函数f(t)和象函数F(w)构成一个傅氏变换对.,在物理学和工程技术中,有许多重要函数不满足傅氏积分定理中的绝对可积条件,即不满足条件,例3 求正弦函数f(t)=sinw0t的傅氏变换。,例4 证明:,证:,例5 计算 和,根据d 函数Fourier变换的,可得,例6 计算,利用,可得,因为d(x)是d 逼近函数 的弱极限,所以由,也可以理解为,(1)d 函数Fourier变换的时移和频移性质,d-函数的傅氏变换为:,于是d(t)与常数1构成了一傅氏变换对.,根据Fourier变换的定义以及d 函数的性质,即,(2)d 函数Fourier变换的微分性质,根据Fourier变换的定义,以及d 函数的性质,又因为,所以,

    注意事项

    本文(复变函数与积分变换第8.2单位脉冲函数.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开