欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《简单的线性规划问题》学案.ppt

    • 资源ID:6528571       资源大小:351.50KB        全文页数:15页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《简单的线性规划问题》学案.ppt

    简单的线性规划问题,一、线性规划在实际中的应用:,线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.下面我们就来看看线性规划在实际中的一些应用:,例5、营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?,分析:将已知数据列成表格,二、例题,解:设每天食用xkg食物A,ykg食物B,总成本为z那么,目标函数为:z28x21y,作出二元一次不等式组所表示的平面区域,即可行域,把目标函数z28x21y 变形为,x,y,o,5/7,5/7,6/7,3/7,3/7,6/7,它表示斜率为随z变化的一组平行直线系,是直线在y轴上的截距,当截距最小时,z的值最小.,M,如图可见,当直线z28x21y 经过可行域上的点M时,截距最小,即z最小.,M点是两条直线的交点,解方程组,得M点的坐标为:,所以zmin28x21y16,由此可知,每天食用食物A143g,食物B约571g,能够满足日常饮食要求,又使花费最低,最低成本为16元.,例6、某人准备投资1200万元兴办一所完全中学。对教育市场进行调查后,他得到了下面的数据表格(以班级为单位),分别用数学关系式和图形表示上述限制条件。若根据有关部门的规定,初中每人每年可收学费1600元,高中每人每年可收学费2700元。那么开设初中班和高中班多少个?每年收费的学费总额最多?,把上面四个不等式合在一起,得到,y,x,20,30,40,20,30,o,另外,开设的班级不能为负,则x0,y0.,而由于资金限制,26x54y22x23y1200,解:设开设初中班x个,高中班y个。因办学规模以2030个班为宜,所以,20 xy30,y,x,20,30,40,20,30,o,由图可以看出,当直线Z7.2x10.8y经过可行域上的点M时,截距最大,即Z最大.,设收取的学费总额为Z万元,则目标函数Z0.1645x0.2740y7.2x10.8y.,Z7.2x10.8y变形为它表示斜率为 的直线系,Z与这条直线的截距有关.,M,易求得M(20,10),则Zmax 7.2x10.8y 252,故开设20个初中班和10个高中班,收取的学费最多,为252万元.,例7、一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐15t.现库存磷酸盐10t、硝酸盐66t,在此基础上生产这两种混合肥料.列出满足生产条件的数学关系式,并画出相应的平面区域。并计算生产甲、乙两种肥料各多少车皮,能够产生最大的利润?,解:设x、y分别为计划生产甲、乙两种混合肥料的车皮数,于是满足以下条件:,x,y,o,解:设生产甲种肥料x车皮、乙种肥料y车皮,能够产生利润Z万元。目标函数为Zx0.5y,可行域如图:,把Zx0.5y变形为y2x2z,它表示斜率为2,在y轴上的截距为2z的一组直线系.,x,y,o,由图可以看出,当直线经过可行域上的点M时,截距2z最大,即z最大.,故生产甲种、乙种肥料各2车皮,能够产生最大利润,最大利润为3万元.,M,容易求得M点的坐标为(2,2),则Zmin3,三、练习题,某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元,甲、乙产品都需要在A、B两种设备上加工,在每台A、B上加工1件甲所需工时分别为1h、2h,A、B两种设备每月有效使用台数分别为400h和500h.如何安排生产可使收入最大?,设每月生产甲产品x件,生产乙产品y件,每月收入为z,目标函数为Z3x2y,满足的条件是,Z 3x2y 变形为它表示斜率为 的直线系,Z与这条直线的截距有关.,x,y,O,400,200,250,500,当直线经过点M时,截距最大,Z最大.,M,解方程组,可得M(200,100),Z 的最大值Z 3x2y800,故生产甲产品200件,乙产品100件,收入最大,为80万元.,四.课时小结,线性规划的两类重要实际问题的解题思路:,1.应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.,2.用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解.(一般最优解在直线或直线的交点上,要注意斜率的比较.),3.要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.,

    注意事项

    本文(《简单的线性规划问题》学案.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开