欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    MATLAB05数据分析与计算.ppt

    • 资源ID:6511680       资源大小:567.50KB        全文页数:55页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    MATLAB05数据分析与计算.ppt

    5.1 数据简单统计处理5.2 多项式计算5.3 线性方程组求解5.4 非线性方程数值求解5.5 函数极值5.6 数值积分,第5讲 数据分析与计算问题,5.1 数据统计处理5.1.1 最大值和最小值MATLAB提供的求数据序列的最大值和最小值的函数分别为max和min,两个函数的调用格式和操作过程类似。1求向量的最大值和最小值求一个向量X的最大值的函数有两种调用格式,分别是:(1)y=max(X):返回向量X的最大值存入y,如果X中包含复数元素,则按模取最大值。,(2)y,I=max(X):返回向量X的最大值存入y,最大值的序号存入I,如果X中包含复数元素,则按模取最大值。求向量X的最小值的函数是min(X),用法和max(X)完全相同。例5-1 求向量x的最大值。命令如下:x=-43,72,9,16,23,47;y=max(x)%求向量x中的最大值y,l=max(x)%求向量x中的最大值及其该元素的位置,2求矩阵的最大值和最小值求矩阵A的最大值的函数有3种调用格式,分别是:(1)max(A):返回一个行向量,向量的第i个元素是矩阵A的第i列上的最大值。(2)Y,U=max(A):返回行向量Y和U,Y向量记录A的每列的最大值,U向量记录每列最大值的行号。,(3)max(A,dim):dim取1或2。dim取1时,该函数和max(A)完全相同;dim取2时,该函数返回一个列向量,其第i个元素是A矩阵的第i行上的最大值。求最小值的函数是min,其用法和max完全相同。例5-2 分别求34矩阵x中各列和各行元素中的最大值,并求整个矩阵的最大值和最小值。,3两个向量或矩阵对应元素的比较函数max和min还能对两个同型的向量或矩阵进行比较,调用格式为:(1)U=max(A,B):A,B是两个同型的向量或矩阵,结果U是与A,B同型的向量或矩阵,U的每个元素等于A,B对应元素的较大者。(2)U=max(A,n):n是一个标量,结果U是与A同型的向量或矩阵,U的每个元素等于A对应元素和n中的较大者。min函数的用法和max完全相同。例5-3 求两个23矩阵x,y所有同一位置上的较大元素构成的新矩阵p。,5.1.2 求和与求积数据序列求和与求积的函数是sum和prod,其使用方法类似。设X是一个向量,A是一个矩阵,函数的调用格式为:sum(X):返回向量X各元素的和。prod(X):返回向量X各元素的乘积。sum(A):返回一个行向量,其第i个元素是A的第i列的元素和。,prod(A):返回一个行向量,其第i个元素是A的第i列的元素乘积。sum(A,dim):当dim为1时,该函数等同于sum(A);当dim为2时,返回一个列向量,其第i个元素是A的第i行的各元素之和。prod(A,dim):当dim为1时,该函数等同于prod(A);当dim为2时,返回一个列向量,其第i个元素是A的第i行的各元素乘积。例5-4 求矩阵A的每行元素的乘积和全部元素的乘积。,5.1.3 平均值和中值求数据序列平均值的函数是mean,求数据序列中值的函数是median。两个函数的调用格式为:mean(X):返回向量X的算术平均值。median(X):返回向量X的中值。mean(A):返回一个行向量,其第i个元素是A的第i列的算术平均值。median(A):返回一个行向量,其第i个元素是A的第i列的中值。mean(A,dim):当dim为1时,该函数等同于mean(A);当dim为2时,返回一个列向量,其第i个元素是A的第i行的算术平均值。median(A,dim):当dim为1时,该函数等同于median(A);当dim为2时,返回一个列向量,其第i个元素是A的第i行的中值。例5-5 分别求向量x与y的平均值和中值。,5.1.4 累加和与累乘积在MATLAB中,使用cumsum和cumprod函数能方便地求得向量和矩阵元素的累加和与累乘积向量,函数的调用格式为:cumsum(X):返回向量X累加和向量。cumprod(X):返回向量X累乘积向量。cumsum(A):返回一个矩阵,其第i列是A的第i列的累加和向量。cumprod(A):返回一个矩阵,其第i列是A的第i列的累乘积向量。cumsum(A,dim):当dim为1时,该函数等同于cumsum(A);当dim为2时,返回一个矩阵,其第i行是A的第i行的累加和向量。cumprod(A,dim):当dim为1时,该函数等同于cumprod(A);当dim为2时,返回一个向量,其第i行是A的第i行的累乘积向量。例5-6 求s的值。,5.1.5 排序MATLAB中对向量X是排序函数是sort(X),函数返回一个对X中的元素按升序排列的新向量。sort函数也可以对矩阵A的各列或各行重新排序,其调用格式为:Y,I=sort(A,dim)其中dim指明对A的列还是行进行排序。若dim=1,则按列排;若dim=2,则按行排。Y是排序后的矩阵,而I记录Y中的元素在A中位置。,例5-9 对二维矩阵做各种排序。,5.2 多项式,多项式的建立 1、多项式的表示(1)一般都是按未知量的降幂排列各项之和,(2)在MATLAB中,用它的系数矢量来表示多项式:,注意:若ai中有的为0,这个0不能省略,必须在系数矢量中。,2、创建多项式的方法(1)系数矢量直接输入法 在命令窗口直接输入多项式的系数矢量,再利用转换函数Poly2sym将多项式由系数矢量形式转换为符号形式。,(2)特征多项式输入法 n阶方阵的特征多项式系数矢量一定是n+1阶的,同时特征多项式系数矢量的第一个元素必须为1。,例.求矩阵A=1 2 3;4 5 6;7 8 9的特征多项式系数,并转换为多项式形式。A=1 2 3;4 5 6;7 8 9;P=poly(A)f=poly2sym(P),(3)由根矢量创建多项式 已知一个多项式的全部根X求多项式系数的函数是poly(X),该函数返回以X为全部根的一个多项式P,当X是一个长度为m的向量时,P是一个长度为m+1的向量。,例.由根矢量-0.5-0.3+0.4i-0.3-0.4i创建多项式 R=-0.5-0.3+0.4i-0.3-0.4i;P=poly(R)f=poly2sym(P),5.2.2 多项式的四则运算1多项式的加减运算2多项式乘法运算函数conv(P1,P2)用于求多项式P1和P2的乘积。这里,P1、P2是两个多项式系数向量。例6-16 求多项式x4+8x3-10与多项式2x2-x+3的乘积。,3多项式除法函数Q,r=deconv(P1,P2)用于对多项式P1和P2作除法运算。其中Q返回多项式P1除以P2的商式,r返回P1除以P2的余式。这里,Q和r仍是多项式系数向量。deconv是conv的逆函数,即有P1=conv(P2,Q)+r。,例5-17 求多项式x4+8x3-10除以 多项式2x2-x+3的结果。,5.2.3 多项式的导函数对多项式求导数的函数是:p=polyder(P):求多项式P的导函数p=polyder(P,Q):求PQ的导函数p,q=polyder(P,Q):求P/Q的导函数,导函数的分子存入p,分母存入q。上述函数中,参数P,Q是多项式的向量表示,结果p,q也是多项式的向量表示。,例5-18 求有理分式的导数。命令如下:P=1;Q=1,0,5;p,q=polyder(P,Q),5.2.4 多项式的求值MATLAB提供了两种求多项式值的函数:polyval与polyvalm,它们的输入参数均为多项式系数向量P和自变量x。两者的区别在于前者是代数多项式求值,而后者是矩阵多项式求值。,1代数多项式求值polyval函数用来求代数多项式的值,其调用格式为:Y=polyval(P,x)若x为一数值,则求多项式在该点的值;若x为向量或矩阵,则对向量或矩阵中的每个元素求其多项式的值。例5-19 已知多项式x4+8x3-10,分别取x=1.2和一个23矩阵为自变量计算该多项式的值。,2矩阵多项式求值polyvalm函数用来求矩阵多项式的值,其调用格式与polyval相同,但含义不同。polyvalm函数要求x为方阵,它以方阵为自变量求多项式的值。设A为方阵,P代表多项式x3-5x2+8,那么polyvalm(P,A)的含义是:A*A*A-5*A*A+8*eye(size(A)而polyval(P,A)的含义是:A.*A.*A-5*A.*A+8*ones(size(A)例5-20 仍以多项式x4+8x3-10为例,取一个22矩阵为自变量分别用polyval和polyvalm计算该多项式的值。,5.2.5 多项式求根n次多项式具有n个根,当然这些根可能是实根,也可能含有若干对共轭复根。MATLAB提供的roots函数用于求多项式的全部根,其调用格式为:x=roots(P)其中P为多项式的系数向量,求得的根赋给向量x,即x(1),x(2),x(n)分别代表多项式的n个根。,例5-21 求多项式x4+8x3-10的根。命令如下:A=1,8,0,0,-10;x=roots(A)若已知多项式的全部根,则可以用poly函数建立起该多项式,其调用格式为:P=poly(x)若x为具有n个元素的向量,则poly(x)建立以x为其根的多项式,且将该多项式的系数赋给向量P。,例5-22 已知 f(x)(1)计算f(x)=0 的全部根。(2)由方程f(x)=0的根构造一个多项式g(x),并与f(x)进行对比。命令如下:P=3,0,4,-5,-7.2,5;X=roots(P)%求方程f(x)=0的根G=poly(X)%求多项式g(x),5.3 线性方程组求解5.3.1 直接解法1利用左除运算符的直接解法对于线性方程组Ax=b,可以利用左除运算符“”求解:x=Ab,例5-23 用直接解法求解下列线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;x=Ab,2利用矩阵的分解求解线性方程组 矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成若干个矩阵的乘积。常见的矩阵分解有LU分解、QR分解、Cholesky分解,以及Schur分解、Hessenberg分解、奇异分解等。,(1)LU分解矩阵的LU分解就是将一个矩阵表示为一个交换下三角矩阵和一个上三角矩阵的乘积形式。线性代数中已经证明,只要方阵A是非奇异的,LU分解总是可以进行的。MATLAB提供的lu函数用于对矩阵进行LU分解,其调用格式为:L,U=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),使之满足X=LU。注意,这里的矩阵X必须是方阵。L,U,P=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P,使之满足PX=LU。当然矩阵X同样必须是方阵。实现LU分解后,线性方程组Ax=b的解x=U(Lb)或x=U(LPb),这样可以大大提高运算速度。,例5-24 用LU分解求解例5-23中的线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;L,U=lu(A);x=U(Lb)或采用LU分解的第2种格式,命令如下:L,U,P=lu(A);x=U(LP*b),(2)QR分解对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。MATLAB的函数qr可用于对矩阵进行QR分解,其调用格式为:Q,R=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。Q,R,E=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE=QR。实现QR分解后,线性方程组Ax=b的解x=R(Qb)或x=E(R(Qb)。,例5-25 用QR分解求解例5-23中的线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;Q,R=qr(A);x=R(Qb)或采用QR分解的第2种格式,命令如下:Q,R,E=qr(A);x=E*(R(Qb),(3)Cholesky分解如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即X=RR。MATLAB函数chol(X)用于对矩阵X进行Cholesky分解,其调用格式为:R=chol(X):产生一个上三角阵R,使RR=X。若X为非对称正定,则输出一个出错信息。R,p=chol(X):这个命令格式将不输出出错信息。当X为对称正定的,则p=0,R与上述格式得到的结果相同;否则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足RR=X(1:q,1:q)。实现Cholesky分解后,线性方程组Ax=b变成RRx=b,所以x=R(Rb)。,例5-26 用Cholesky分解求解例5-23中的线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;R=chol(A)?Error using=cholMatrix must be positive definite命令执行时,出现错误信息,说明A为非正定矩阵。,5.3.2 迭代解法迭代解法非常适合求解大型系数矩阵的方程组。在数值分析中,迭代解法主要包括 Jacobi迭代法、Gauss-Serdel迭代法、超松弛迭代法和两步迭代法。1Jacobi迭代法对于线性方程组Ax=b,如果A为非奇异方阵,即aii0(i=1,2,n),则可将A分解为A=D-L-U,其中D为对角阵,其元素为A的对角元素,L与U为A的下三角阵和上三角阵,于是Ax=b化为:x=D-1(L+U)x+D-1b与之对应的迭代公式为:x(k+1)=D-1(L+U)x(k)+D-1b这就是Jacobi迭代公式。如果序列x(k+1)收敛于x,则x必是方程Ax=b的解。,Jacobi迭代法的MATLAB函数文件Jacobi.m如下:function y,n=jacobi(A,b,x0,eps)if nargin=3 eps=1.0e-6;elseif nargin=eps x0=y;y=B*x0+f;n=n+1;end,例5-5 用Jacobi迭代法求解下列线性方程组。设迭代初值为0,迭代精度为10-6。在命令中调用函数文件Jacobi.m,命令如下:A=10,-1,0;-1,10,-2;0,-2,10;b=9,7,6;x,n=jacobi(A,b,0,0,0,1.0e-6),2Gauss-Serdel迭代法在Jacobi迭代过程中,计算时,已经得到,不必再用,即原来的迭代公式Dx(k+1)=(L+U)x(k)+b可以改进为Dx(k+1)=Lx(k+1)+Ux(k)+b,于是得到:x(k+1)=(D-L)-1Ux(k)+(D-L)-1b该式即为Gauss-Serdel迭代公式。和Jacobi迭代相比,Gauss-Serdel迭代用新分量代替旧分量,精度会高些。,Gauss-Serdel迭代法的MATLAB函数文件gauseidel.m如下:function y,n=gauseidel(A,b,x0,eps)if nargin=3 eps=1.0e-6;elseif nargin=eps x0=y;y=G*x0+f;n=n+1;end,例5-6 用Gauss-Serdel迭代法求解下列线性方程组。设迭代初值为0,迭代精度为10-6。在命令中调用函数文件gauseidel.m,命令如下:A=10,-1,0;-1,10,-2;0,-2,10;b=9,7,6;x,n=gauseidel(A,b,0,0,0,1.0e-6),例5-7 分别用Jacobi迭代和Gauss-Serdel迭代法求解下列线性方程组,看是否收敛。命令如下:a=1,2,-2;1,1,1;2,2,1;b=9;7;6;x,n=jacobi(a,b,0;0;0)x,n=gauseidel(a,b,0;0;0),5.4 非线性方程数值求解5.4.1 单变量非线性方程求解 在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。该函数的调用格式为:z=fzero(fname,x0,tol,trace)其中fname是待求根的函数文件名,x0为搜索的起点。一个函数可能有多个根,但fzero函数只给出离x0最近的那个根。tol控制结果的相对精度,缺省时取tol=eps,trace指定迭代信息是否在运算中显示,为1时显示,为0时不显示,缺省时取trace=0。,例5-8 求f(x)=x-10 x+2=0在x0=0.5附近的根。步骤如下:(1)建立函数文件funx.m。function fx=funx(x)fx=x-10.x+2;(2)调用fzero函数求根。z=fzero(funx,0.5)z=0.3758,5.4.2 非线性方程组的求解 对于非线性方程组F(X)=0,用fsolve函数求其数值解。fsolve函数的调用格式为:X=fsolve(fun,X0,option)其中X为返回的解,fun是用于定义需求解的非线性方程组的函数文件名,X0是求根过程的初值,option为最优化工具箱的选项设定。最优化工具箱提供了20多个选项,用户可以使用optimset命令将它们显示出来。如果想改变其中某个选项,则可以调用optimset()函数来完成。例如,Display选项决定函数调用时中间结果的显示方式,其中off为不显示,iter表示每步都显示,final只显示最终结果。optimset(Display,off)将设定Display选项为off。,例5-27 求下列非线性方程组在(0.5,0.5)附近的数值解。(1)建立函数文件myfun.m。function q=myfun(p)x=p(1);y=p(2);q(1)=x-0.6*sin(x)-0.3*cos(y);q(2)=y-0.6*cos(x)+0.3*sin(y);(2)在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程的根。x=fsolve(myfun,0.5,0.5,optimset(Display,off)x=0.6354 0.3734,将求得的解代回原方程,可以检验结果是否正确,命令如下:q=myfun(x)q=1.0e-009*0.2375 0.2957 可见得到了较高精度的结果。,5.5 函数极值 MATLAB提供了基于单纯形算法求解函数极值的函数fmin和fmins,它们分别用于单变量函数和多变量函数的最小值,其调用格式为:x=fmin(fname,x1,x2)x=fmins(fname,x0)这两个函数的调用格式相似。其中fmin函数用于求单变量函数的最小值点。fname是被最小化的目标函数名,x1和x2限定自变量的取值范围。fmins函数用于求多变量函数的最小值点,x0是求解的初始值向量。,MATLAB没有专门提供求函数最大值的函数,但只要注意到-f(x)在区间(a,b)上的最小值就是f(x)在(a,b)的最大值,所以fmin(f,x1,x2)返回函数f(x)在区间(x1,x2)上的最大值。,例5-28 求f(x)=x3-2x-5在0,5内的最小值点。(1)建立函数文件mymin.m。function fx=mymin(x)fx=x.3-2*x-5;(2)调用fmin函数求最小值点。x=fmin(mymin,0,5)x=0.8165,5.6 数值积分5.6.1 数值积分基本原理 求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)法、牛顿柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间a,b分成n个子区间xi,xi+1,i=1,2,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。,5.6.2 数值积分的实现方法1变步长辛普生法基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为:I,n=quad(fname,a,b,tol,trace)其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。,例8-1 求定积分。(1)建立被积函数文件fesin.m。function f=fesin(x)f=exp(-0.5*x).*sin(x+pi/6);(2)调用数值积分函数quad求定积分。S,n=quad(fesin,0,3*pi)S=0.9008n=77,1已知某班的5名学生的三门课成绩列表如下:学生序号 1 2 3 4 5 高等数学 78 89 64 73 68 外语 83 77 80 78 70MATLAB语言 82 91 78 82 68试写出有关命令,先分别找出三门课的最高分及其学生序号;然后找出三门课总分的最高分及其学生序号。2针对上小题的成绩表,求出其三门课总分存入数组ZF,再利用SORT命令对之按降序排序,同时把相应的学生序号存入数组XH。,上机作业:,3今有多项式P1(x)=x4-2x+1,P2(x)=x2+4x-0.5,要求先求得P(x)=P1(x)+P2(x),然后计算xi=0.2*i各点上的P(xi)(i=0,1,2,5)值。4试编一个m程序,将一维数组x中的N个数按颠倒的次序重新存储。如N=5,原来x为:x=1 3 5 7 9 而经过颠倒处理后x中数据的次序应该为:x=9 7 5 3 1,上机作业:,5、解方程组Axb,分别用求逆解法与直接解法求其解。6、编一个m程序,求N阶方阵A的行列式的值。,上机作业:,

    注意事项

    本文(MATLAB05数据分析与计算.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开