高等数学上23高阶导数.ppt
2.3 高阶导数 P97,一、高阶导数的定义二、高阶导数求法举例,一、高阶导数的定义,定义,记作,一、高阶导数的定义,问题:变速直线运动的加速度.,定义,记作,三阶导数的导数称为四阶导数,二阶和二阶以上的导数统称为高阶导数.,二阶导数的导数称为三阶导数,二、高阶导数求法举例,例1,解,1.直接法:,由高阶导数的定义逐步求高阶导数.,例2,解,例3,解,注意:,求n阶导数时,分析结果的规律性,写出n阶导数.(数学归纳法证明),例4,解,同理可得,例5,解,2.n阶导数的运算法则:,莱布尼兹公式,例6,解,3.间接法:,常用高阶导数公式,利用已知的高阶导数公式,通过四则,运算,变量代换等方法,求出n阶导数.,例7 1),解,解,解,例8 1),2),2),解,练习1:设,求使,存在的最高,分析:,但是,不存在.,2,又,阶数,提示:令,原式,原式,练习2:设,y(n)=?,思考题,设 连续,且,,求.,思考题解答,可导,不一定存在,故用定义求,设 连续,且,,求.,内容小结,(1)逐阶求导法,(2)利用归纳法,(3)间接法,利用已知的高阶导数公式,(4)利用莱布尼兹公式,高阶导数的求法,如,作业P101 1(9),(12);2;3;10(1),