高一数学13-1柱体、椎体、台体的表面积与体积.ppt
1.3.1 柱体、锥体、台体的表 面积与体积,1.3 空间几何体的表面积与体积,问题提出,1.对于空间几何体,我们分别从结构特征和视图两个方面进行了研究,为了度量一个几何体的大小,我们还须进一步学习几何体的表面积和体积.,2.柱、锥、台、球是最基本、最简单的几何体,研究空间几何体的表面积和体积,应以柱、锥、台、球的表面积和体积为基础.那么如何求柱、锥、台、球的表面积和体积呢?,柱体、锥体、台体的表面积与体积,知识探究(一)柱体、锥体、台体的表面积,思考1:面积是相对于平面图形而言的,体积是相对于空间几何体而言的.你知道面积和体积的含义吗?,面积:平面图形所占平面的大小,体积:几何体所占空间的大小,思考2:所谓表面积,是指几何体表面的面积.怎样理解棱柱、棱锥、棱台的表面积?,各个侧面和底面的面积之和或展开图的面积.,思考3:圆柱、圆锥、圆台的底面都是圆面,侧面都是曲面,怎样求它们的侧面面积?,思考4:圆柱的侧面展开图的形状有哪些特征?如果圆柱的底面半径为r,母线长为l,那么圆柱的表面积公式是什么?,思考5:圆锥的侧面展开图的形状有哪些特征?如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积公式是什么?,思考6:圆台的侧面展开图的形状有哪些特征?如果圆台的上、下底面半径分别为r、r,母线长为l,那么圆台的表面积公式是什么?,思考7:在圆台的表面积公式中,若r=r,r=0,则公式分别变形为什么?,知识探究(二)柱体、锥体、台体的体积,思考1:你还记得正方体、长方体和圆柱的体积公式吗?它们可以统一为一个什么公式?,思考2:推广到一般的棱柱和圆柱,你猜想柱体的体积公式是什么?,思考3:关于体积有如下几个原理:(1)相同的几何体的体积相等;(2)一个几何体的体积等于它的各部分体积之和;(3)等底面积等高的两个同类几何体的体积相等;(4)体积相等的两个几何体叫做等积体.,将一个三棱柱按如图所示分解成三个三棱锥,那么这三个三棱锥的体积有什么关系?它们与三棱柱的体积有什么关系?,思考4:推广到一般的棱锥和圆锥,你猜想锥体的体积公式是什么?,思考5:根据棱台和圆台的定义,如何计算台体的体积?,设台体的上、下底面面积分别为S、S,高为h,那么台体的体积公式是什么?,思考6:在台体的体积公式中,若S=S,S=0,则公式分别变形为什么?,理论迁移,例1 求各棱长都为a的四面体的表面积.,例2 一个圆台形花盆盆口直径为20cm,盆底直径为15cm,底部渗水圆孔直径为1.5cm,盆壁长15cm,为了美化花盆的外观,需要涂油漆.已知每平方米用100毫升油漆,涂100个这样的花盆需要多少油漆(精确到1毫升)?,15,例3 有一堆规格相同的铁制六角螺帽共重5.8kg(铁的密度是7.8g/cm3),已知螺帽的底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个?,V2956(mm3)=2.956(cm3),5.81007.82.956252(个),作业:P28习题1.3 A组:1,2,3,4,5.,