挡土墙设计与边坡稳定.ppt
第五章 土压力与边坡稳定,5.1 概述5.2 朗肯土压力理论5.3 库仑土压力理论5.4 库伦理论与郎肯理论的比较5.5 挡土墙设计5.6 边坡稳定分析,一、概述挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物,用于公路,铁路,水坝建设,水土保持,山体滑坡等领域。,6.4 挡土墙设计,路堤挡土墙,新建公路,边坡挡土墙,地下室侧墙,桥台挡土墙,基坑支护挡土墙,驳岸挡土墙,互嵌式景观挡土墙,自嵌式景观挡土墙,绿化加筋挡土墙,锚索桩板墙处治,岩石边坡喷射植生混凝土防护,喷锚支护挂网,上海路抗滑桩工程,挡土墙的设计步骤,1.选择挡土墙类型,初步拟定墙身断面尺寸,2.墙身材料强度验算,3.地基稳定性验算,4.挡土墙抗倾覆、抗滑移验算,5.变形验算,6.4 挡土墙设计,6.4 挡土墙设计,二、挡土墙类型,1.重力式挡土墙,块石、砖或素混凝土砌筑而成,靠自身重力维持稳定,墙体抗拉、抗剪强度都较低。墙身截面尺寸大,一般用于墙高H8米的低挡土墙。,E1E2E3,重力式挡墙,2.悬臂式挡土墙,钢筋混凝土建造,立臂、墙趾悬臂和墙踵悬臂三块悬臂板组成,靠墙踵悬臂上的土重维持稳定,墙体内拉应力由钢筋承担,墙身截面尺寸小,充分利用材料特性,市政工程中常用,适用于墙高H5米。,3.扶壁式挡土墙,针对悬臂式挡土墙立臂受力后弯矩和挠度过大缺点,增设扶壁,扶壁间距(0.30.6)h,墙体稳定靠扶壁间填土重维持,适用于墙高H10米。,4.锚定板式与锚杆式挡土墙,预制钢筋混凝土面板、立柱、钢拉杆和埋在土中锚定板组成,稳定由拉杆和锚定板来维持,预制钢筋混凝土面板、土工合成材料制成拉筋承受土体中拉力是一种新型的挡土结构。这种结构具有结构轻、柔性大、节约材料、工程造价低、抗震性能好、适用于承载力较低的地基等特点,因此目前在铁路、公路建设等方面应用很多。,5.加筋土挡土结构,加筋土挡土墙绿化,土工格栅加筋建成56.5m高的加筋挡土墙,采用桩基础,打入地基一定深度,形成板桩墙,用做挡土结构,基坑工程中应用较广,6.桩撑挡土结构,三、挡土墙验算,1.稳定性验算:抗倾覆稳定和抗滑稳定,2.地基承载力验算,3.墙身强度验算,4.变形验算,d,抗倾覆稳定条件:,挡土墙在土压力作用下可能绕墙趾O点向外倾覆,1.稳定性验算:抗倾覆稳定验算,d,抗倾覆稳定条件:,挡土墙在土压力作用下可能绕墙趾O点向外倾覆,不满足时应采取的措施:,扩大墙断面尺寸,增加墙身重量墙趾伸长修改墙背形状在挡土墙垂直墙背上做卸荷台,1.稳定性验算:抗倾覆稳定验算,抗滑稳定条件:,挡土墙在土压力作用下可能沿基础底面发生滑动,m为基底摩擦系数,根据土的类别查表4-3得到,1.稳定性验算:抗滑稳定验算,抗滑稳定条件:,挡土墙在土压力作用下可能沿基础底面发生滑动,不满足时应采取的措施:,扩大墙断面尺寸,增加墙身重量挡土墙底面作砂、石垫层挡土墙底作逆坡在墙趾处加阻滑短桩或在墙踵后加拖板,1.稳定性验算:抗滑稳定验算,2.地基承载力验算,3.墙身强度验算,四、重力式挡土墙的体型与构造,1.墙背倾斜形式,重力式挡土墙按墙背倾斜方向分为仰斜、直立和俯斜三种形式,三种形式应根据使用要求、地形和施工情况综合确定,E1E2E3,2.挡土墙截面尺寸,砌石挡土墙顶宽不小于0.5m,混凝土墙可缩小为0.20m0.40m,重力式挡土墙基础底宽约为墙高的1/21/3,为了增加挡土墙的抗滑稳定性,将基底做成逆坡,当墙高较大,基底压力超过地基承载力时,可加设墙趾台阶,挡土墙基底埋深一般应不小于0.5m,3.墙后排水措施,挡土墙后填土由于雨水入渗,抗剪强度降低,土压力增大,同时产生水压力,对挡土墙稳定不利,因此挡土墙应设置很好的排水措施,增加其稳定性,墙后填土宜选择透水性较强的填料,例如砂土、砾石、碎石等,若采用粘土,应混入一定量的块石,增大透水性和抗剪强度,墙后填土应分层夯实,4.填土质量要求,5.6 边坡稳定分析,无粘性土土坡稳定分析粘性土土坡稳定分析,学习要求:掌握土坡滑动失稳的机理,砂土土坡、粘土土坡的整体稳定分析方法和了解成层土土坡稳定分析条分法。,一、土坡稳定概述,由于地质作用而自然形成的土坡,在天然土体中开挖或填筑而成的土坡,山坡、江河湖海岸坡,基坑、基槽、路基、堤坝,一、土坡稳定概述,土坡失稳含义:填方或挖方土坡由于坡角过陡、坡顶荷重过大、振动以及地下水自坡面溢出等因素导致土坡滑动、丧失稳定土坡失稳原因:1、外界力的作用破坏了土体内原来的应力平衡状态,土坡内剪应力增加2、土的抗剪强度由于受到外界各种因素的影响而降低,促使土坡失稳破坏。,1.土坡坡度:土坡坡度有两种表示方法:一种以高度与水平尺度之比来表示,一种以坡角表示,坡角越小土坡越稳定,但不经济;2.土坡高度:H越小,土坡越稳定;3.土的性质:其性质越好,土坡越稳定;4.气象条件:晴朗干燥土的强度大,稳定性好;5.地下水的渗透:土坡中存在与滑动方向渗透力,不利;6.强烈地震:在地震区遇强烈地震,会使土的强度降低,且地震力或使土体产生孔隙水压力,则对土坡稳定性不利。,影响土坡稳定的因素,稳定分析方法:采用极限平衡理论,假定滑动面形状,用库仑定律,计算稳定安全系数K,坡面,坡肩,基本假设 根据实际观测,由均质砂性土构成的土坡,破坏时滑动面大多近似于平面,成层的非均质的砂类土构成的土坡,破坏时的滑动面也往往近于一个平面,因此在分析砂性土的土坡稳定时,一般均假定滑动面是平面。,二、无粘性土坡稳定分析,简单土坡是指土坡的坡度不变,顶面和底面都是水平的,且土质均匀,无地下水。,二、无粘性土坡稳定分析,二、无粘性土坡稳定分析,均质的无粘性土土坡,在干燥或完全浸水条件下,土粒间无粘结力,只要位于坡面上的土单元体能够保持稳定,则整个坡面就是稳定的,单元体稳定,TT,土坡整体稳定,T,稳定条件:TT,砂土的内摩擦角,抗滑力与滑动力的比值,稳定性系数,取1.11.5,自然休止角(安息角),砂性土坡所形成的最大坡角就是砂土的内摩擦角根据这一原理,工程上可以通过堆砂锥体法确定砂土内摩擦角,均质粘性土土坡在失稳破坏时,其滑动面常常是一曲面,通常近似于圆柱面,在横断面上则呈现圆弧形。实际土坡在滑动时形成的滑动面与坡角b、地基土强度以及土层硬层的位置等有关,一般可形成如下三种形式:1.坡脚圆(a);2.坡面圆(b);3.中点圆(c),三、粘性土土坡稳定分析,三、粘性土土坡稳定分析,1、瑞典圆弧滑动法,2、条分法,3、泰勒稳定因素法,三、粘性土土坡稳定分析,1、瑞典圆弧滑动法,假定滑动面为圆柱面,截面为圆弧,利用土体极限平衡条件下的受力情况:,滑动面上的最大抗滑力矩与滑动力矩之比,取1.11.5,Ks是任意假定某个滑动面的抗滑安全系数,实际要求的是与最危险滑动面相对应的最小安全系数,2、条分法,对于外形复杂、0的粘性土土坡,土体分层情况时,要确定滑动土体的重量及其重心位置比较困难,而且抗剪强度的分布不同,一般采用条分法分析,滑动土体分为若干垂直土条,2、条分法,1.假定问题为平面问题,2.假定危险滑动面(即剪切面)为圆弧面,3.假定抗剪强度全部得到发挥,4.不考虑各分条之间的作用力,条分法分析步骤,1.按比例绘出土坡剖面,2.任选一圆心O,确定滑动面,将滑动面以上土体分成几个等宽或不等宽土条,3.每个土条的受力分析,静力平衡,假设两组合力(Pi,Xi)(Pi1,Xi1),条分法分析步骤,4.滑动面的总滑动力矩,5.滑动面的总抗滑力矩,6.确定安全系数,3、泰勒稳定因素法,土坡的稳定性相关因素:,泰勒(Taylor,D.W,1937)用图表表达影响因素的相互关系,稳定因数,土坡的临界高度或极限高度,泰勒稳定因素法适宜解决简单土坡稳定分析的问题:已知坡角及土的指标c、,求稳定的坡高H已知坡高H及土的指标c、,求稳定的坡角已知坡角、坡高H及土的指标c、,求稳定安全系数K s,