欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    复数的概念和几何意义.ppt

    • 资源ID:6461848       资源大小:628.50KB        全文页数:19页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    复数的概念和几何意义.ppt

    复数的概念和几何意义,无实根,一复习引入,自然数,分数,有理数,无理数,实数,分数的引入,解决了在自然数集中不能整除的矛盾。,整数,负数的引入,解决了在正有理数集中不够减的矛盾。,无理数的引入,解决了开方开不尽的矛盾。,在实数集范围内,负数不能开平方,我们要引入什么数,才能解决这个矛盾呢?,一复习引入,问5:引入一个新数?,实际上,早在16世纪时期,数学家们就已经解决了这个矛盾,而且形成了一整套完整的理论。因为这个新数不是实数,就称为虚数单位,所以,用“i”来表示这个新数。,问6:引入的新数必须满足一定的条件,才能进行相关的运算,虚数单位i应满足什么条件呢?,二新课复数的概念,问6:根据这种规定,数的范围又扩充了,会出现什么形式的数呢?,二新课复数的概念,相关概念:,复数a+bi(a,bR)由两部分组成,实数a与b分别称为复数a+bi的实部与虚部,1与i分别是实数单位和虚数单位,当b=0时,a+bi就是实数,当b0时,a+bi是虚数,其中a=0且b0时称为纯虚数。,二新课复数的概念,复数z=a+bi,(a、bR),(b=0),分数,不循环小数,虚数,(b0),特别的当 a=0 时,纯虚数,二新课复数的概念,二新课例题剖析,问8:两个复数之间可以比较大小吗?,两个不全是实数的复数之间是不能比较大小的,但若它们的实部与虚部分别相等,我们就说这两个复数相等。,二新课复数的概念,例2.实数 m 取什么数值时,复数 z=(m+1)+(m1)i是:(1)实数?(2)虚数?(3)纯虚数?,解:复数z=m+1+(m1)i 中,因为mR,所以m+1,m1都是实数,它们分别是z的实部和虚部,,(1)m=1时,z是实数;(2)m1时,z是虚数;,(3)当 时,即m=1时,z是纯虚数;,二新课例题剖析,例3.已知(2x-1)+i=y-(3-y)i,其中 x,y R,求 x 与 y.,例4.已知 x2+y2-6+(x-y-2)i=0,求实数 x 与 y 的值.,二新课例题剖析,实数可以用数轴上的点来表示。,一一对应,实数,数轴上的点,(形),(数),二新课复数的概念,问9:如何建立复数集与平面直角坐标系中的点集之间的联系?,复数z=a+bi,有序实数对(a,b),直角坐标系中的点Z(a,b),x,y,o,b,a,Z(a,b),建立了平面直角坐标系来表示复数的平面,x轴-实轴,y轴-虚轴,(数),(形),-复数平面(简称复平面),一一对应,z=a+bi,二新课复数的概念,特别注意:虚轴不包括原点。,复数的一个几何意义,y,x,A,B,C,O,例5.用复平面内点表示复数(每个小方格的边长是1):3-2i,3i,-3,0.,y,x,A,B,C,D,E,O,例7:说出图中复平面内点所表示的复数(每个小方格的边长是1),6+7i,-6,-8+6i,-3i,2-7i,z=a+bi,|z|=|OZ|,(复数的绝对值),复数 z=a+bi在复平面上对应的向量的长度。,复数的模,Z(a,b),复数的向量表示,复数z=a+bi,直角坐标系中的点Z(a,b),例6.求下列复数的模:(1)z1=-2i(2)z2=-3+4i(3)z3=25-25i,5,x,y,O,设z=x+yi(x,yR),例7.满足3|z|5(zC)的复数z对应的点在复平面上将构成怎样的图形?,5,5,5,5,3,3,3,3,图形:,以原点为圆心,半径3至5的圆环内,例8.已知复数m=23i,若复数z满足不等式|zm|=1,则z所对应的点的集合是什么图形?,以点(2,3)为圆心,1为半径的圆.,

    注意事项

    本文(复数的概念和几何意义.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开