几何中的应用修改.ppt
,第六节,复习 目录 上页 下页 返回 结束,一、空间曲线的切线与法平面,二、曲面的切平面与法线,多元函数微分学的几何应用,第七章,复习:平面曲线的切线与法线,已知平面光滑曲线,切线方程,法线方程,若平面光滑曲线方程为,故在点,切线方程,法线方程,在点,有,有,因,机动 目录 上页 下页 返回 结束,一、空间曲线的切线与法平面,过点 M 与切线垂直的平面称为曲线在该点的法,机动 目录 上页 下页 返回 结束,位置.,空间光滑曲线在点 M 处的切线为此点处割线的极限,平面.,点击图中任意点动画开始或暂停,1.曲线方程为参数方程的情况,切线方程,机动 目录 上页 下页 返回 结束,此处要求,也是法平面的法向量,切线的方向向量:,称为曲线的切向量.,如个别为0,则理解为分子为 0.,机动 目录 上页 下页 返回 结束,不全为0,因此得法平面方程,例1.,求圆柱螺旋线,对应点处的切线方程和法平面方程.,切线方程,法平面方程,即,即,解:由于,对应的切向量为,在,机动 目录 上页 下页 返回 结束,故,2.曲线为一般式的情况,光滑曲线,机动 目录 上页 下页 返回 结束,则在点,切线方程,法平面方程,有,注:上述公式可用后面的曲面的法向量的向量积来解析。,例2.求曲线,在点,M(1,2,1)处的切线方程与法平面方程.,机动 目录 上页 下页 返回 结束,解.方程组两边对 x 求导,得,曲线在点 M(1,2,1)处有:,切向量,解得,(分析:将此曲线看成(化成)参数为x的参数方程。),切线方程,即,法平面方程,即,点 M(1,2,1)处的切向量,机动 目录 上页 下页 返回 结束,二、曲面的切平面与法线,设 有光滑曲面,通过其上定点,对应点 M,切线方程为,不全为0.,则 在,且,点 M 的切向量为,任意引一条光滑曲线,下面证明:,此平面称为 在该点的切平面.,机动 目录 上页 下页 返回 结束,上过点 M 的任何曲线在该点的切线都,在同一平面上.,证:,机动 目录 上页 下页 返回 结束,在 上,得,令,由于曲线 的任意性,表明这些切线都在以,为法向量,的平面上,从而切平面存在.,曲面 在点 M 的法向量,法线方程,切平面方程,复习 目录 上页 下页 返回 结束,曲面,时,则在点,故当函数,法线方程,令,特别,当光滑曲面 的方程为显式,在点,有连续偏导数时,切平面方程,机动 目录 上页 下页 返回 结束,法向量,用,将,法向量的方向余弦:,表示法向量的方向角,并假定法向量方向,分别记为,则,向上,复习 目录 上页 下页 返回 结束,例3.求球面,在点(1,2,3)处的切,平面及法线方程.,解:,所以球面在点(1,2,3)处有:,切平面方程,即,法线方程,法向量,令,机动 目录 上页 下页 返回 结束,例4.求曲线,在点(1,1,1)的切线,解:点(1,1,1)处两曲面的法向量为,因此切线的方向向量为,由此得切线:,法平面:,即,与法平面.,机动 目录 上页 下页 返回 结束,注意与例2解法的比较!,1.空间曲线的切线与法平面,切线方程,法平面方程,1)参数式情况.,空间光滑曲线,切向量,内容小结,机动 目录 上页 下页 返回 结束,切线方程,法平面方程,空间光滑曲线,切向量,2)一般式情况.,机动 目录 上页 下页 返回 结束,空间光滑曲面,曲面 在点,法线方程,1)隐式情况.,的法向量,切平面方程,2.曲面的切平面与法线,机动 目录 上页 下页 返回 结束,空间光滑曲面,切平面方程,法线方程,2)显式情况.,法线的方向余弦,法向量,机动 目录 上页 下页 返回 结束,作业 习题7-61(2)(4),2,3(1),4,第二节 目录 上页 下页 返回 结束,