邱关源电路第五版第9章正弦稳态电路的分析.ppt
第9章 正弦稳态电路的分析,本章重点,2.正弦稳态电路的分析;,3.正弦稳态电路的功率分析;,重点:,1.阻抗和导纳;,返 回,9.1 阻抗和导纳,1.阻抗,正弦稳态情况下,阻抗模,阻抗角,欧姆定律的相量形式,下 页,上 页,返 回,当无源网络内为单个元件时有:,Z 可以是实数,也可以是虚数。,下 页,上 页,表明,返 回,2.RLC串联电路,KVL:,下 页,上 页,返 回,Z 复阻抗;|Z|复阻抗的模;z 阻抗角;R 电阻(阻抗的实部);X电抗(阻抗的虚部)。,阻抗三角形,下 页,上 页,返 回,分析 R、L、C 串联电路得出:,(1)Z=R+j(wL-1/wC)=|Z|jz 为复数,称复阻抗,(2)wL 1/wC,X0,j z0,电路为感性,电压超前电流。,下 页,上 页,相量图:一般选电流为参考向量,,电压三角形,返 回,(3)wL1/wC,X0,jz 0,电路为容性,电压落后电流。,下 页,上 页,(4)wL=1/wC,X=0,j z=0,电路为电阻性,电压与电流同相。,返 回,例,已知:R=15,L=0.3mH,C=0.2F,求 i,uR,uL,uC.,解,画出相量模型,下 页,上 页,返 回,则,下 页,上 页,返 回,下 页,上 页,UL=8.42U=5,分电压大于总电压。,相量图,注意,返 回,3.导纳,正弦稳态情况下,导纳模,导纳角,下 页,上 页,返 回,对同一二端网络:,当无源网络内为单个元件时有:,Y 可以是实数,也可以是虚数。,下 页,上 页,表明,返 回,4.RLC并联电路,由KCL:,下 页,上 页,返 回,Y复导纳;|Y|复导纳的模;y导纳角;G 电导(导纳的实部);B 电纳(导纳的虚部);,导纳三角形,下 页,上 页,返 回,(1)Y=G+j(wC-1/wL)=|Y|jy为复数,称复导纳;,(2)wC 1/wL,B0,y0,电路为容性,电流超前电压。,相量图:选电压为参考向量,,分析 R、L、C 并联电路得出:,RLC并联电路会出现分电流大于总电流的现象,下 页,上 页,注意,返 回,(3)wC1/wL,B0,y0,电路为感性,电流落后电压;,下 页,上 页,返 回,(4)wC=1/wL,B=0,j y=0,电路为电阻性,电流与电压同相。,下 页,上 页,返 回,5.复阻抗和复导纳的等效互换,一般情况G1/R,B1/X。若Z为感性,X0,则 B0,即仍为感性。,下 页,上 页,注意,返 回,下 页,上 页,注意,一端口N0的阻抗或导纳是由其内部的参数、结构和正弦电源的频率决定的,在一般情况下,其每一部分都是频率的函数,随频率而变;,返 回,下 页,上 页,注意,一端口N0的两种参数Z和Y具有同等效用,彼此可以等效互换,其极坐标形式表示的互换条件为,返 回,6.阻抗(导纳)的串联和并联,阻抗的串联,下 页,上 页,返 回,导纳的并联,两个阻抗Z1、Z2的并联等效阻抗为:,下 页,上 页,返 回,例1,求图示电路的等效阻抗,105rad/s。,解,感抗和容抗为:,下 页,上 页,返 回,9.3 正弦稳态电路的分析,电阻电路与正弦电流电路的分析比较:,下 页,上 页,返 回,1.引入相量法,电阻电路和正弦电流电路依据的电路定律是相似的。,下 页,上 页,结论,2.引入电路的相量模型,把列写时域微分方程转为直接列写相量形式的代数方程。,3.引入阻抗以后,可将电阻电路中讨论的所有网络定理和分析方法都推广应用于正弦稳态的相量分析中。直流(f=0)是一个特例。,返 回,例1,画出电路的相量模型,解,下 页,上 页,返 回,下 页,上 页,返 回,下 页,上 页,返 回,列写电路的回路电流方程和结点电压方程,例2,解,回路方程,下 页,上 页,返 回,结点方程,下 页,上 页,返 回,方法1:电源变换,解,例3,下 页,上 页,返 回,方法2:戴维宁等效变换,求开路电压:,求等效电阻:,下 页,上 页,返 回,例4,求图示电路的戴维宁等效电路。,解,下 页,上 页,求开路电压:,返 回,求短路电流:,下 页,上 页,返 回,例5,用叠加定理计算电流,解,下 页,上 页,返 回,下 页,上 页,返 回,已知平衡电桥 Z1=R1,Z2=R2,Z3=R3+jwL3。求:Zx=Rx+jwLx。,平衡条件:Z1 Z3=Z2 Zx 得:,R1(R3+jwL3)=R2(Rx+jwLx),Rx=R1R3/R2,Lx=L3 R1/R2,例6,解,|Z1|1|Z3|3=|Z2|2|Zx|x,|Z1|Z3|=|Z2|Zx|,1+3=2+x,下 页,上 页,返 回,已知:Z=10+j50W,Z1=400+j1000W。,例7,解,下 页,上 页,返 回,例8,求RL串联电路在正弦输入下的零状态响应。,解,应用三要素法:,用相量法求正弦稳态解,下 页,上 页,返 回,直接进入稳定状态,下 页,上 页,过渡过程与接入时刻有关,注意,返 回,出现瞬时电流大于稳态电流现象,下 页,上 页,返 回,9.4 正弦稳态电路的功率,1.瞬时功率,下 页,上 页,返 回,p 有时为正,有时为负;p0,电路吸收功率;p0,电路发出功率;,UIcos 恒定分量。,UIcos(2 t)为正弦分量。,下 页,上 页,返 回,2.平均功率 P,=u-i:功率因数角。对无源网络,为 其等效阻抗的阻抗角。,cos:功率因数。,P 的单位:W(瓦),下 页,上 页,返 回,一般地,有:0cos1,X0,j 0,感性,,X0,j 0,容性,,平均功率实际上是电阻消耗的功率,亦称为有功功率。表示电路实际消耗的功率,它不仅与电压电流有效值有关,而且与 cos 有关,这是交流和直流的很大区别,主要由于电压、电流存在相位差。,下 页,上 页,结论,返 回,4.视在功率S,3.无功功率 Q,单位:var(乏)。,Q0,表示网络吸收无功功率;Q0,表示网络发出无功功率。Q 的大小反映网络与外电路交换功率的速率。是由储能元件L、C的性质决定的,下 页,上 页,电气设备的容量,返 回,有功,无功,视在功率的关系:,有功功率:P=UIcos 单位:W,无功功率:Q=UIsinj 单位:var,视在功率:S=UI 单位:VA,功率三角形,下 页,上 页,返 回,5.R、L、C元件的有功功率和无功功率,PR=UIcos=UIcos0=UI=I2R=U2/RQR=UIsin=UIsin0=0,PL=UIcos=UIcos90=0QL=UIsin=UIsin90=UI=I2XL,PC=UIcos=UIcos(-90)=0QC=UIsin=UIsin(-90)=-UI=I2XC,下 页,上 页,返 回,6.任意阻抗的功率计算,PZ=UIcos=I2|Z|cos=I2R,QZ=UIsin=I2|Z|sin=I2X I2(XLXC)=QLQC,(发出无功),下 页,上 页,返 回,7.功率因数的提高,设备容量 S(额定)向负载送多少有功要由负载的阻抗角决定。,P=UIcos=Scosj,cosj=1,P=S=75kW,cosj=0.7,P=0.7S=52.5kW,一般用户:异步电机 空载 cosj=0.20.3 满载 cosj=0.70.85,日光灯 cosj=0.450.6,设备不能充分利用,电流到了额定值,但功率容量还有;,功率因数低带来的问题:,下 页,上 页,返 回,当输出相同的有功功率时,线路上电流大,线路压降损耗大。,解决办法:(1)高压传输(2)并联电容,提高功率因数。,下 页,上 页,返 回,分析,并联电容后,原负载的电压和电流不变,吸收的有功功率和无功功率不变,即:负载的工作状态不变。但电路的功率因数提高了。,特点:,下 页,上 页,返 回,9.5 复功率,1.复功率,定义:,也可表示为:,下 页,上 页,返 回,下 页,上 页,结论,是复数,而不是相量,它不对应任意正弦量;,注意,返 回,9.6 最大功率传输,Zi=Ri+jXi,ZL=RL+jXL,下 页,上 页,返 回,正弦电路中负载获得最大功率Pmax的条件,若ZL=RL+jXL可任意改变,先设 RL 不变,XL 改变,显然,当Xi+XL=0,即XL=-Xi时,P 获得最大值。,再讨论 RL 改变时,P 的最大值,下 页,上 页,讨论,当RL=Ri 时,P 获得最大值,ZL=Zi*,最佳匹配条件,返 回,若ZL=RL+jXL只允许XL改变,获得最大功率的条件是:Xi+XL=0,即 XL=-Xi,最大功率为,若ZL=RL为纯电阻,负载获得的功率为:,电路中的电流为:,模匹配,下 页,上 页,返 回,