欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    用-圆的参数方程.ppt

    • 资源ID:6427066       资源大小:447.50KB        全文页数:33页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    用-圆的参数方程.ppt

    第二讲 参 数 方 程,1、参数方程的概念,(1)在取定的坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数,即并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程组就叫做这条曲线的参数方程,联系x、y之间关系的变数叫做参变数,简称参数。参数方程的参数可以是有物理、几何意义的变数,也可以是没有明显意义的变数。,(2)相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。,(4)证明这个参数方程就是所由于的曲线的方程.,参数方程求法:,(1)建立直角坐标系,设曲线上任一点P坐标为;,(2)选取适当的参数;,(3)根据已知条件和图形的几何性质,物理意义,建立点P坐标与参数的函数式;,、圆的参数方程,sin=cos=tan=cot=,yr,xr,yx,xy,1三角函数定义,A,(x,y),y,x,o,r,sec=rxcsc=ry,一 复习回顾,并且对于 的每一个允许值,由方程组所确定的点P(x,y),都在圆O上.,5,o,思考1:圆心为原点,半径为r 的圆的参数方程是什么呢?,观察2,(a,b),r,又,所以,圆心为原点半径为r 的圆的参数方程.,其中参数的几何意义是OM0绕点O逆时针旋转到OM的位置时,OM0转过的角度,一般地,同一条曲线,可以选取不同的变数为参数,,另外,要注明参数及参数的取值范围。,例1、已知圆方程x2+y2+2x-6y+9=0,将它化为参数方程。,解:x2+y2+2x-6y+9=0化为标准方程,(x+1)2+(y-3)2=1,,参数方程为,(为参数),练习:1.填空:已知圆O的参数方程是,(0 2),如果圆上点P所对应的参数,则点P的坐标是,A,的圆,化为标准方程为,解:设M的坐标为(x,y),可设点P坐标为(4cos,4sin),点M的轨迹是以(6,0)为圆心、2为半径的圆。,2,例2.如图,已知点P是圆x2+y2=16上的一个动点,点A是x轴上的定点,坐标为(12,0).当点P在圆 上运动时,线段PA中点M的轨迹是什么?,例题:,1,解:设M的坐标为(x,y),点M的轨迹是以(6,0)为圆心、2为半径的圆。,由中点坐标公式得:点P的坐标为(2x-12,2y),(2x-12)2+(2y)2=16,即 M的轨迹方程为(x-6)2+y2=4,点P在圆x2+y2=16上,例2.如图,已知点P是圆x2+y2=16上的一个动点,点A是x轴上的定点,坐标为(12,0).当点P在圆 上运动时,线段PA中点M的轨迹是什么?,例题:,例3、已知点P(x,y)是圆x2+y2-6x-4y+12=0上动点,求(1)x2+y2 的最值,(2)x+y的最值,(3)P到直线x+y-1=0的距离d的最值。,解:圆x2+y2-6x-4y+12=0即(x-3)2+(y-2)2=1,用参数方程表示为,由于点P在圆上,所以可设P(3+cos,2+sin),,x2+y2 的最大值为14+2,最小值为14-2。,(2)x+y=3+cos+2+sin=5+sin(+),x+y的最大值为5+,最小值为5-。,(3),显然当sin(+)=1时,d取最大值,最小值,分别为,。,参数方程和普通方程的互化,把它化为我们熟悉的普通方程,有 cos=x-3,sin=y;于是(x-3)2+y2=1,轨迹是什么就很清楚了,在例1中,由参数方程,直接判断点M的轨迹是什么并不方便,,一般地,可以通过消去参数而从参数方程得到普通方程;,曲线的参数方程和普通方程是曲线方程的不同形式.,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致,否则,互化就是不等价的.,把参数方程化为普通方程:,例1、把下列参数方程化为普通方程,并说明它们各表示什么曲线?,解:(1)由,得,代入,得到,这是以(1,1)为端点的一条射线;,所以,把,得到,(1),(2),(1)(x-2)2+y2=9,(2)y=1-2x2(-1x1),(3)x2-y=2(x2或x-2),练习、将下列参数方程化为普通方程:,步骤:(1)消参;(2)求定义域。,B,例2 求参数方程,表示(),(A)双曲线的一支,这支过点(1,1/2);,(B)抛物线的一部分,这部分过(1,1/2);,(C)双曲线的一支,这支过点(1,1/2);,(D)抛物线的一部分,这部分过(1,1/2).,为什么两个参数方程合起来才是椭圆的参数方程?,在y=x2中,xR,y0,,因而与 y=x2不等价;,练习:,曲线y=x2的一种参数方程是().,在A、B、C中,x,y的范围都发生了变化,,而在D中,x,y范围与y=x2中x,y的范围相同,,代入y=x2后满足该方程,,从而D是曲线y=x2的一种参数方程.,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。否则,互化就是不等价的.,解:,练习 P是双曲线(t是参数)上任一点,F1,F2是该焦点:求F1F2的重心G的轨迹的普通方程。,参数方程化为普通方程的过程就是消参过程常见方法有三种:,1.代入法:,利用解方程的技巧求出参数t,然后代入消去参数,2.三角法:,利用三角恒等式消去参数,3.整体消元法:,根据参数方程本身的结构特征,整体上消去,化参数方程为普通方程为F(x,y)=0:在消参过程中注意变量x、y取值范围的一致性,必须根据参数的取值范围,确定f(t)和g(t)值域得x、y的取值范围。,小 结,小 结:1、圆的参数方程2、参数方程与普通方程的概念3、圆的参数方程与普通方程的互化4、求轨迹方程的三种方法:相关点点问题(代入法);参数法;定义法5、求最值,解:x2+y2+2x-6y+9=0化为标准方程,(x+1)2+(y-3)2=1,参数方程为,(为参数),例1 已知圆方程x2+y2+2x-6y+9=0,将它化为参数方程。,练习:,例2 如图,圆O的半径为2,P是圆上的动点,Q(6,0)是x轴上的定点,M是PQ的中点,当点P绕O作匀速圆周运动时,求点M的轨迹的参数方程。,解:设点M的坐标是(x,y),则点P的坐标是(2cos,2sin).,由中点坐标公式可得,因此,点M的轨迹的参数方程是,解:由已知圆的参数方程为,练习,A,A36 B6 C26 D25,D,A,.,5 已知点P是圆 上一个动点,定点A(12,0),点M在线段PA上,且2|PM|=|MA|,当点P在圆上运动 时,求点M的轨迹,解:设点M的坐标是(x,y),则点P的坐标是(4cos,4sin).,2|PM|=|MA|,由题设,(x-12,y)=,因此,点M的轨迹的参数方程是,例4(1)点P(m,n)在圆x2+y2=1上运动,求点Q(m+n,2mn)的轨迹方程;,(2)方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0.若该方程表示一个圆,求m的取值范围和圆心的轨迹方程.,已知P(x,y)圆C:x2+y26x4y+12=0上的点。,(1)求 的最小值与最大值,(2)求xy的最大值与最小值,例5 最值问题,例6 参数法求轨迹,已知点A(2,0),P是x2+y2=1上任一点,的平分线交PA于Q点,求Q点的轨迹.,AQ:QP=2:1,练习 将下列参数方程化为普通方程,

    注意事项

    本文(用-圆的参数方程.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开