欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    几种纹理分析算法讲解ppt.ppt

    • 资源ID:6407289       资源大小:2.16MB        全文页数:42页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    几种纹理分析算法讲解ppt.ppt

    纹理分析,提到纹理,人们自然会立刻想到木制家俱上的木纹、花布上的花纹等。木纹为天然纹理,花纹为人工纹理,它们反映了物体表面颜色和灰度的某种变化。这些变化与物体本身的属性相关。,有些图像在局部区域内呈现不规则性,而在整体上表现出某种规律性。习惯上,把这种局部不规则而宏观有规律的特性称之为纹理;以纹理特性为主导的图像,常称为纹理图像;以纹理特性为主导特性的区域,常称为纹理区域。纹理作为一种区域特性,在图像的一定区域上才能反映或测量出来。,为了定量描述纹理,多年来人们建立了许多纹理算法以测量纹理特性.这些方法大体可以分为两大类:统计分析法和结构分析法。前者从图像有关属性的统计分析出发;后者则着力找出纹理基元,然后从结构组成上探索纹理的规律。也有直接去探求纹理构成的结构规律的。下面论述纹理特征提取与分析的几种方法。,纹理区域的灰度直方图作为纹理特征,简明总结了图像中的统计信息。为了研究灰度直方图的相似性,可以提取诸如均值、方差、能量以及熵等特征来描述纹理。如果用p(i),i=1,2,G,来表示图像的一阶直方图,则相关的纹理特征有:,一.影像纹理的直方图分析法,如果限定对象,则采用这样简单的方法也能够识别纹理。但是灰度直方图不能得到纹理的二维灰度变化,即使作为一般性的纹理识别法,其能力是很低的。例如下图两种纹理具有相同的直方图,只靠直方图就不能区别这两种纹理。,以下是提取不同纹理测度特征值所获得的纹理影像:原图:方差:,能量:熵:,二.自相关函数分析法,若有一幅图像f(i,j),i,j=0,1,N-1,则该图像的自相关函数定义为,自相关函数具有如下规律:1.不同的纹理图像,(x,y)随d变化的规律是不同的。1)当纹理较粗时,(d)随d的增加下降速度较慢;2)当纹理较细时,(d)随d的增加下降速度较快。2.随着d继续增加,(d)则会呈现某种周期性的变化,其周期大小可描述纹理基元分布的疏密程度。,以下是不同图像的自相关函数曲线示例:,D7的纹理比较粗糙,曲线的下降速度较慢;D20的纹理比较细致,曲线的下降速度较快。,自相关系数的变化趋势反映了纹理的粗细程度,然而,对于同样粗糙(细致)但完全不同的两种纹理,它们的自相关系数很可能比较相近,很难将这两种纹理区分开来。,以下是取x=3,y=0时计算特征值所获得的纹理影像:原图:x=3,y=0:,三.边界频率分析法,与自相关函数方法中用空间频率来区分纹理的粗细不同,边界频率认为纹理可以用每单位面积内边界来区分纹理。粗糙的纹理由于局部邻域内的灰度相似,并没有太大变化,因而每单位面积内的边界数会较小;细致的纹理由于局部邻域内的灰度变化较快,所以每单位面积内的边界数会较大。对于一个定义在邻域N内的一幅纹理图像f和每一个距离d,边界频率可以计算出一个依赖于距离d的纹理描述函数E:,以下是不同图像的边界频率曲线示例:,D2的纹理比较粗糙,边界频率较低;D21的纹理比较细致,边界频率较高。,由于边界频率分析法只反映了纹理的粗细,因此其缺点和自相关函数法是一样的,即:对于同样粗糙(细致)但完全不同的两种纹理,它们的边界频率很可能比较相近,很难将这两种纹理区分开来。,以下是d取1、2时计算特征值(E(2)-E(1)所获得的纹理影像:原图:d=1,2:,四.小波分析法,小波变化是一种时间频率局部化分析方法,具有多分辨率分析的特点,而且在时域和频域都具有表征信号局部特征的能力。离散小波变换对信号不同的频率成分在时域上的抽样间隔是可调的,高频者小,低频者大,所以,它能将信号分解成交织在一起的多种成分,以便分析、处理。小波变换的基本思想是用一族函数去表示或逼近一信号,这一族函数称为小波基,它是通过一小波母函数的伸缩和平移产生其子波来构成的。,对于信号f,其连续小波变换Wf(a,b)定义为:,选择不同特定的小波基函数,就可以得到原信号的逼近信号和小波信号。,下图给出了不同分别率下的离散逼近信号(低通滤波器):,由上面两图可见:信号的小波分解包含了原信号和逼近分解之间的信息差。,下图给出相应的离散小波信号(高通滤波器):,将小波变换从一维推广到图像处理的二维情况,则一幅图像可以分解成3J+1幅子图,J代表小波分解的次数,每幅子图代表不同的频段,如下图:,Sj代表第j分解原图的低频子图,D1代表原图沿垂直方向的高频段子图,D2代表原图沿水平方向的高频段子图,D3代表原图沿45度对角方向的高频段子图。,小波变换过程:,小波分解实例:,由图可见变换后图像左上角的小波分量和原图最接近,是原图的近似;而其他分量则是原图的纹理部分。,实际应用:由于不同地物具有不同的频谱曲线;纹理细致密集的在高频段具有较高能量,纹理粗糙稀疏的在低频段具有较高能量。因此,可以取图像上大小为w*w的小块,对其进行小波分解(实验中对每个小块进行2层小波变换),计算分解后每一子图的信息熵,作为小块的特征度量指标,共有7组特征指标。,以下是取第一次小波变换垂直分量的特征值形成的纹理影像:原图:信息熵:,由图可见,小波变换的纹理分类效果甚至不如最简单的灰度直方图方法。对此,有研究者分析认为:传统的基于小波变换的纹理分类方法常常采用纹理特征来达到分类目的,但对于自然图像,由于在一个纹理区域内的像素并不是处处相似的,因而影响纹理分类效果。,五.灰度共生矩阵分析法,定义:在三维空间中,相隔某一距离的两个像素,它们具有相同的灰度级,或者具有不同的灰度级,若能找出这样两个像素的联合分布的统计形式,对于图像的纹理分析将是很有意义的。灰度共生矩阵就是从图像(x,y)灰度为i的像素出发,统计与距离为=(x2+y2)1/2、灰度为j的像素同时出现的概率P。,概率P(i,j,)的数学式表示为:P(i,j,)(x,y),(x+x,y+y)|f(x,y)=i,f(x+x,y+y)=j;x,y=0,1,N-1,根据上述定义,所构成的灰度共生矩阵的第 i 行、第 j 列元素,表示图像上所有在方向、相隔为,一个为灰度i值,另一个为灰度j值的像素点对出现的频率。这里取值一般为0度、45度、90度和135度。很明显,若x1,y0,则0度;x1,y-1,则 45度;x0,y-1,则=90度;x=-1,y=-1,则=135度。的取值与图像有关,一般根据试验确定P。,像素组合统计表,像素组合方式,下图(a)所示的图像,取相邻间隔=1,各方向的灰度共生矩阵如下图(b)所示。,(a),(b),对称性,灰度共生矩阵特征的提取,灰度共生矩阵反映了图像灰度关于方向、相邻间隔、变化幅度的综合信息,它可作为分析图像基元和排列结构的信息。作为纹理分析的特征量,往往不是直接应用计算的灰度共生矩阵,而是在灰度共生矩阵的基础上再提取纹理特征量,称为二次统计量。一幅图像的灰度级数一般是256,这样计算的灰度共生矩阵太大。为了解决这一问题,在求灰度共生矩阵之前,常压缩为16级。,基于灰度共生矩阵的特征,Haralick等人由灰度共生矩阵提取了14种特征。最常用的5个特征是:1)角二阶矩(能量)2)对比度(惯性矩)3)相关 4)熵 5)局部一致性指数若希望提取具有旋转不变性的特征,简单的方法是对取0度、45度、90度和135度的同一特征求平均值和均方差就可得到。,以下是=0度、=1、灰度级数=8时计算局部一致性指数所获得的纹理影像:原图:局部一致性指数:,六.基于分形维数的分析法,分数维作为分形的重要特征和度量,可以把图像的空间信息和灰度信息简单而又有机地结合起来。在各种分数维中,最常用的是计盒维。本例中用的计盒维定义如下:对于大小为N*N的图像I=I(i,j),i,j=1,2,N,将三维空间(x,y,z)引入I中,其中(x,y)为 图像的平面坐标,z为图像在(x,y)处的灰度 I(i,j),将I分割成大小为s*s的方块b(m,n),每,每一个方块对应于一个大小为s*s*s的盒子柱Bc。设k,i表示方块b(m,n)中图像像素的最小与最大灰度值落入第k个和第i个盒子,ns(m,n)为与方块b(m,n)对应的图像灰度值所落入的盒子数目,则 对于整个图像I有 s趋向于无穷小时,计盒维是,其中,r=s/N,Nr=Ns。,取不同的s值,通过对log(Nr)和log(1/r)的拟合可以求出对应于所有尺度s的计盒维的估计值D。,以下是取图像的计盒维作为特征值形成的纹理影像:原图:计盒维:,由于现实世界的纹理常常由于方位、尺度或其它方面的变化而引起图像的不一致,上述方法尚难以全面而精确地描述和提取纹理信息,因而图像纹理分析成功的例子并不多见。通常纹理分析的方法都是针对某一特定应用而特别加以设计的。,谢谢!,

    注意事项

    本文(几种纹理分析算法讲解ppt.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开