高等数学ch03第4讲.ppt
第三章第四讲,一.函数的单调性判别法.二.函数的极值及其求法.三.最大值与最小值问题.,一.函数单调性的判别法,(一)单调性的判别法,定理,证,应用拉氏定理,得,例1,解,注意:函数的单调性是一个区间上的性质,要用导数在这一区间上的符号来判定,而不能用一点处的导数符号来判别一个区间上的单调性,例2,解,单调区间为,例3,解,单调区间为,例4,证,注意:区间内个别点导数为零,不影响区间的单调性.,例如,(一)函数极值的定义,定义,函数的极大值与极小值统称为极值,使函数取得极值的点称为极值点.,(二)函数极值的求法,定理1(必要条件),定义,注意:,例如,定理2(第一充分条件),(是极值点情形),求极值的步骤:,(不是极值点情形),例1,解,列表讨论,极大值,极小值,图形如下,定理3(第二充分条件),证,例2,解,图形如下,注意:,例3,解,注意:函数的不可导点,也可能是函数的极值点.,(一)最值的求法,步骤:,1.求驻点和不可导点;,2.求区间端点及驻点和不可导点的函数值,比较大小,那个大那个就是最大值,那个小那个就是最小值;,注意:如果区间内只有一个极值,则这个极值就是最值.(最大值或最小值),(二)应用举例,例1,解,计算,比较得,例2,敌人乘汽车从河的北岸A处以1千米/分钟的速度向正北逃窜,同时我军摩托车从河的南岸B处向正东追击,速度为2千米/分钟问我军摩托车何时射击最好(相距最近射击最好)?,解,(1)建立敌我相距函数关系,敌我相距函数,得唯一驻点,实际问题求最值应注意:,(1)建立目标函数;,(2)求最值;,例3,某房地产公司有50套公寓要出租,当租金定为每月180元时,公寓会全部租出去当租金每月增加10元时,就有一套公寓租不出去,而租出去的房子每月需花费20元的整修维护费试问房租定为多少可获得最大收入?,解,设房租为每月 元,,租出去的房子有 套,,每月总收入为,(唯一驻点),故每月每套租金为350元时收入最高。,最大收入为,例4,解,如图,解得,