高数同济版第十二章幂级数.ppt
一、函数项级数的概念,二、幂级数及其收敛性,三、幂级数的运算,12.3 幂级数,第十二章,一、函数项级数的概念,设,为定义在区间 I 上的函数项级数.,对,若常数项级数,敛点,所有收敛点的全体称为其收敛域;,若常数项级数,为定义在区间 I 上的函数,称,收敛,发散,所有,为其收,为其发散点,发散点的全体称为其发散域.,为级数的和函数,并写成,若用,令余项,则在收敛域上有,表示函数项级数前 n 项的和,即,在收敛域上,函数项级数的和是 x 的函数,称它,例如,等比级数,它的收敛域是,它的发散域是,或写作,有和函数,二、幂级数及其收敛性,形如,的函数项级数称为幂级数,其中数列,下面着重讨论,例如,幂级数,为幂级数的系数.,即是此种情形.,的情形,即,称,(1),因为只要令,则(1)成为,收敛域,收敛,发散,定理 1.(Abel定理),若幂级数,则对满足不等式,的一切 x 幂级数都绝对收敛.,反之,若当,的一切 x,该幂级数也发散.,时该幂级数发散,则对满足不等式,证:,收敛,则必有,于是存在,常数 M 0,使,当 时,收敛,故原幂级数绝对收敛.,也收敛,反之,若当,时该幂级数发散,下面用反证法证之.,假设有一点,满足不等式,所以若当,满足,且使级数收敛,面的证明可知,级数在点,故假设不真.,的 x,原幂级数也发散.,时幂级数发散,则对一切,则由前,也应收敛,与所设矛盾,证毕,幂级数在(,+)收敛;,由Abel 定理可以看出,中心的区间.,用R 表示幂级数收敛与发散的分界点,的收敛域是以原点为,则,R=0 时,幂级数仅在 x=0 收敛;,R=时,幂级数在(R,R)收敛;,(R,R)加上收敛的端点称为收敛域.,R 称为收敛半径,,在R,R,可能收敛也可能发散.,外发散;,在,(R,R)称为收敛区间.,定理2.若,的系数满足,证:,1)若 0,则根据比值审敛法可知:,当,原级数收敛;,当,原级数发散.,即,时,1)当 0 时,2)当 0 时,3)当 时,即,时,则,2)若,则根据比值审敛法可知,绝对收敛,3)若,则对除 x=0 以外的一切 x 原级发散,对任意 x 原级数,因此,因此,的收敛半径为,说明:据此定理,因此级数的收敛半径,记下来!,比值判别法成立,根值判别法成立,对端点 x=1,的收敛半径及收敛域.,解:,对端点 x=1,级数为交错级数,收敛;,级数为,发散.,故收敛域为,例1.求幂级数,例2.求下列幂级数的收敛域:,解:(1),所以收敛域为,(2),所以级数仅在 x=0 处收敛.,例3.,的收敛半径.,解:级数缺少奇次幂项,不能直接应用定理2,比值审敛法求收敛半径.,时级数收敛,时级数发散,故收敛半径为,故直接由,例4.,的收敛域.,解:令,级数变为,当 t=2 时,级数为,此级数发散;,当 t=2 时,级数为,此级数条件收敛;,因此级数(2)的收敛域为,故原级数的收敛域为,即,(2),三、幂级数的运算,定理3.设幂级数,及,的收敛半径分别为,令,则有:,其中,以上结论可用部分和的极限证明.,*说明:,两个幂级数相除所得幂级数的收敛半径可能比,原来两个幂级数的收敛半径小得多.,例如,设,它们的收敛半径均为,但是,其收敛半径只是,定理4 若幂级数,的收敛半径,(证明略),则其和函,在收敛域上连续,且在收敛区间内可逐项求导与,逐项求积分,运算前后收敛半径相同:,注:逐项积分时,运算前后端点处的敛散性不变.,通过逐项求导和逐项积分目的是转化幂级数为等比级数这样可方便求和.,例5.求级数,的和函数,解:易求出幂级数的收敛半径为 1,收敛,x=1时级数发散,因此由和函数的连续性得:,而,解:由例2可知级数的收敛半径 R+.,例6.,则,故得,的和函数.,因此得,设,例7.,解:构造幂级数,显然收敛域为-1,1),求,的和.,设和函数为,内容小结,1.求幂级数收敛域的方法,1)对标准型幂级数,先求收敛半径,再讨论端点的收敛性.,2)对非标准型幂级数(缺项或通项为复合式),求收敛半径时直接用比值法或根值法,2.幂级数的性质,两个幂级数在公共收敛区间内可进行加、减与,也可通过换元化为标准型再求.,乘法运算.,2)在收敛区间内幂级数的和函数连续;,3)幂级数在收敛区间内可逐项求导和求积分.,思考与练习,1.已知,处条件收敛,问该级数收敛,半径是多少?,答:,根据Abel 定理可知,级数在,收敛,时发散.,故收敛半径为,2.在幂级数,中,n 为奇数,n 为偶数,能否确定它的收敛半径不存在?,答:不能.,因为,当,时级数收敛,时级数发散,说明:可以证明,比值判别法成立,根值判别法成立,(为什么?),P277 1(1),(3),(5),(7),(8)2(1),(3)P323 7(1),(4)8(1),(3),作业,备用题:1,的和函数,解:易求出幂级数的收敛半径为 1,x1 时级数发,散,或,所以,