高数可分离变量微分方程.ppt
10/27/2023,转化,可分离变量微分方程,第二节,解分离变量方程,可分离变量方程,10/27/2023,分离变量方程的解法:,设 y(x)是方程的解,两边积分,得,则有恒等式,当G(y)与F(x)可微且 G(y)g(y)0 时,的隐函数 y(x)是的解.,则有,称为方程的隐式通解,或通积分.,同样,当 F(x)=f(x)0,时,由确定的隐函数 x(y)也是的解.,设左右两端的原函数分别为 G(y),F(x),说明由确定,10/27/2023,例1.求微分方程,的通解.,解:分离变量得,两边积分,得,即,(C 为任意常数),或,说明:在求解过程中每一步不一定是同解变形,因此可能增、,减解.,(此式含分离变量时丢失的解 y=0),10/27/2023,练习:,解法 1 分离变量,即,(C 0),解法 2,故有,积分,(C 为任意常数),所求通解:,积分,10/27/2023,例2.求下述微分方程的通解:,解:令,则,故有,即,解得,(C 为任意常数),所求通解:,10/27/2023,例3.解初值问题,解:分离变量得,两边积分得,即,由初始条件得 C=1,(C 为任意常数),故所求特解为,10/27/2023,例4.,子的含量 M 成正比,求在,衰变过程中铀含量 M(t)随时间 t 的变化规律.,解:根据题意,有,(初始条件),对方程分离变量,即,利用初始条件,得,故所求铀的变化规律为,然后积分:,已知 t=0 时铀的含量为,已知放射性元素铀的衰变速度与当时未衰变原,10/27/2023,例5.,成正比,求,解:根据牛顿第二定律列方程,初始条件为,对方程分离变量,然后积分:,得,利用初始条件,得,代入上式后化简,得特解,并设降落伞离开跳伞塔时(t=0)速度为0,设降落伞从跳伞塔下落后所受空气阻力与速度,降落伞下落速度与时间的函数关系.,t 足够大时,10/27/2023,内容小结,1.微分方程的概念,微分方程;,定解条件;,2.可分离变量方程的求解方法:,说明:通解不一定是方程的全部解.,有解,后者是通解,但不包含前一个解.,例如,方程,分离变量后积分;,根据定解条件定常数.,解;,阶;,通解;,特解,y=x 及 y=C,10/27/2023,找出事物的共性及可贯穿于全过程的规律列方程.,常用的方法:,1)根据几何关系列方程(如:P298 题5(2),2)根据物理规律列方程,3)根据微量分析平衡关系列方程,(2)利用反映事物个性的特殊状态确定定解条件.,(3)求通解,并根据定解条件确定特解.,3.解微分方程应用题的方法和步骤,例4,例5,例6,10/27/2023,思考与练习,求下列方程的通解:,提示:,(1)分离变量,(2)方程变形为,10/27/2023,作业,P 304 1(1),(5),(7),(10);2(3),(4);4;5;6,第三节,