河海大学《几何与代数》课件.ppt
则矩阵 称为 的可逆矩阵或逆阵.,一、概念的引入,在数的运算中,,当数 时,,有,其中 为 的倒数,,(或称 的逆);,在矩阵的运算中,,单位阵 相当于数的乘法运算中,的1,,那么,对于矩阵,,如果存在一个矩阵,使得,二、逆矩阵的概念和性质,例 设,说明 若 是可逆矩阵,则 的逆矩阵是唯一的.,若设 和 是 的可逆矩阵,,则有,可得,所以 的逆矩阵是唯一的,即,例 设,解,设 是 的逆矩阵,则,利用待定系数法,又因为,所以,定理1 矩阵 可逆的充要条件是,且,证明,若 可逆,,按逆矩阵的定义得,证毕,奇异矩阵与非奇异矩阵的定义,推论,证明,逆矩阵的运算性质,证明,证明,例1 求方阵 的逆矩阵.,解,三、逆矩阵的求法,同理可得,故,例2,解,例3,例4 设,解,于是,例5,解,例6,(a),(b),(c),四 分块矩阵的逆(高阶矩阵的逆可化为低阶来算),五、小结,逆矩阵的概念及运算性质.,逆矩阵的计算方法,逆矩阵 存在,思考题,思考题解答,答,