高一数学:1.1.1《集合的含义》课件.ppt
高一年级 数学,第一章 集合的含义与表示,课题:集合的含义,问题提出,“集合”是日常生活中的一个常用词,现代汉语解释为:许多的人或物聚在一起.,在现代数学中,集合是一种简洁、高雅的数学语言,我们怎样理解数学中的“集合”?,集合的含义,知识探究(一),考察下列问题:(1)120以内的所有质数;(2)绝对值小于3的整数;(3)师大附中0705班的所有男同学;(4)平面上到定点O的距离等于定长的所有的点.,思考1:上述每个问题都由若干个对象组成,每组对象的全体分别形成一个集合,集合中的每个对象都称为元素.上述4个集合中的元素分别是什么?,思考3:组成集合的元素所属对象是否有限制?集合中 的元素个数的多少是否有限制?,思考4:美国NBA火箭队的全体队员是否组成一个集合?若是,这个集合中有哪些元素?,思考5:试列举一个集合的例子,并指出集合中的元素.,思考2:一般地,怎样理解“元素”与“集合”?,把研究的对象称为元素,通常用小写拉丁字母a,b,c,表示;把一些元素组成的总体叫做集合,简称集,通常用大写拉丁字母A,B,C,表示.,知识探究(二),任意一组对象是否都能组成一个集合?集合中的元素有什么特征?,思考1:某单位所有的“帅哥”能否构成一个集合?由此说明什么?,集合中的元素必须是确定的,思考2:在一个给定的集合中能否有相同的元素?由此说明什么?,集合中的元素是不重复出现的,思考3:0705班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么?,集合中的元素是没有顺序的,知识探究(三),思考1:设集合A表示“120以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?,思考2:对于一个给定的集合A,那么某元素a与集合A有哪几种可能关系?,思考3:如果元素a是集合A中的元素,我们如何用数学化的语言表达?,a属于集合A,记作,思考4:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?,a不属于集合A,记作,自然数集(非负整数集):记作 N,正整数集:记作 或,整数集:记作 Z,有理数集:记作 Q,实数集:记作 R,知识探究(四),思考1:所有的自然数,正整数,整数,有理数,实数能否分别构成集合?,思考2:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?,理论迁移,例1 已知集合S满足:,且当 时,若,试判断 是否属于S,说明你的理由.,例2 设由4的整数倍再加2的所有实数构成的集合为A,由4的整数倍再加3的所有实数构成的集合为B,若,试推断x+y和x-y与集合B的关系.,