欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    用二重积分计算旋转体体积的几何解释.ppt

    • 资源ID:6370037       资源大小:4.88MB        全文页数:28页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    用二重积分计算旋转体体积的几何解释.ppt

    旋转体体积计算公式的几何意义 1,用二重积分计算旋转体体积的几何解释,龙凤古镇,旋转体体积计算公式的几何意义 2,设D是上半平面内的一个有界闭区域。将D绕x轴旋转一周得一旋转体,求该旋转体的体积V。,我们用元素法来建立旋转体体积的二重积分公式。,D,旋转体体积计算公式的几何意义 3,D,在区域D的(x,y)处取一个面积元素,它到x轴的距离是 y(如图)。,该面积元素绕x轴旋转而成的旋转体的体积约为:,(体积元素),于是整个区域绕x轴旋转而成的旋转体的体积为:,旋转体体积计算公式的几何意义 4,D,命题1:上半平面内一个有界闭区域D绕x轴旋转而成的旋转体的体积为:,旋转体体积计算公式的几何意义 5,下面来解释以上公式的几何意义,旋转体体积计算公式的几何意义 6,区域D中一面积元素 绕x轴旋转而成的旋转体为一环形体(如图)。,旋转体体积计算公式的几何意义 7,区域D中一面积元素 绕x轴旋转而成的旋转体为一环形体(如图)。,其体积约为:,(体积元素),旋转体体积计算公式的几何意义 8,将dV在D上二重积分的几何意义是将划分D的n个面积元素分别绕x轴旋转而成的旋转体相加,得到整个D绕x轴旋转的旋转体。,于是整个区域绕x轴旋转而成的旋转体的体积为:,旋转体体积计算公式的几何意义 9,以下图形给出了这种方法的几何解释,旋转体体积计算公式的几何意义 10,旋转体体积计算公式的几何意义 11,display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h_20,h_28,h_2_8,h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,scaling=constrained,color=green);,旋转体体积计算公式的几何意义 12,display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h_20,h_28,h_2_8,h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,scaling=constrained,color=green);,旋转体体积计算公式的几何意义 13,display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h_20,h_28,h_2_8,h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,scaling=constrained,color=green);,旋转体体积计算公式的几何意义 14,旋转体体积计算公式的几何意义 15,设想用电缆做成一个圆环体那么这个圆环体可由电缆中很多圆环形状的光纤组成因此,我们可以把这种计算旋转体体积的方法形象地称为光纤法或电缆法,旋转体体积计算公式的几何意义 16,更多的图形,旋转体体积计算公式的几何意义 17,旋转体体积计算公式的几何意义 18,旋转体体积计算公式的几何意义 19,with(plots):xzhou:=spacecurve(x,0,0,x=-2.2,thickness=1,color=black):yzhou:=spacecurve(0,y,0,y=-2.2,thickness=1,color=black):zzhou:=spacecurve(0,0,z,z=-2.4,thickness=1,color=black):a:=0:b:=3:R:=1:r:=0.1:yuan:=spacecurve(0,a+R*cos(t),b+R*sin(t),t=0.2*Pi,thickness=3,color=red):a0:=0:a2:=0.2:a4:=0.4:a6:=0.6:a8:=0.8:a_2:=-0.2:a_4:=-0.4:a_6:=-0.6:a_8:=-0.8:b0:=3:b2:=3.2:b4:=3.4:b6:=3.6:b8:=3.8:b_2:=3-0.2:b_4:=3-0.4:b_6:=3-0.6:b_8:=3-0.8:y00:=spacecurve(0,a0+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y02:=spacecurve(0,a0+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y04:=spacecurve(0,a0+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y06:=spacecurve(0,a0+r*cos(t),b6+r*sin(t),t=0.2*Pi,color=blue):y08:=spacecurve(0,a0+r*cos(t),b8+r*sin(t),t=0.2*Pi,color=blue):y0_2:=spacecurve(0,a0+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y0_4:=spacecurve(0,a0+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y0_6:=spacecurve(0,a0+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y0_8:=spacecurve(0,a0+r*cos(t),b_8+r*sin(t),t=0.2*Pi,color=blue):y20:=spacecurve(0,a2+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y22:=spacecurve(0,a2+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y24:=spacecurve(0,a2+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y26:=spacecurve(0,a2+r*cos(t),b6+r*sin(t),t=0.2*Pi,color=blue):y28:=spacecurve(0,a2+r*cos(t),b8+r*sin(t),t=0.2*Pi,color=blue):y2_2:=spacecurve(0,a2+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y2_4:=spacecurve(0,a2+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y2_6:=spacecurve(0,a2+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y2_8:=spacecurve(0,a2+r*cos(t),b_8+r*sin(t),t=0.2*Pi,color=blue):y40:=spacecurve(0,a4+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y42:=spacecurve(0,a4+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y44:=spacecurve(0,a4+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y46:=spacecurve(0,a4+r*cos(t),b6+r*sin(t),t=0.2*Pi,color=blue):y48:=spacecurve(0,a4+r*cos(t),b8+r*sin(t),t=0.2*Pi,color=blue):y4_2:=spacecurve(0,a4+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y4_4:=spacecurve(0,a4+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y4_6:=spacecurve(0,a4+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y4_8:=spacecurve(0,a4+r*cos(t),b_8+r*sin(t),t=0.2*Pi,color=blue):y60:=spacecurve(0,a6+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y62:=spacecurve(0,a6+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y64:=spacecurve(0,a6+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y66:=spacecurve(0,a6+r*cos(t),b6+r*sin(t),t=0.2*Pi,color=blue):y6_2:=spacecurve(0,a6+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y6_4:=spacecurve(0,a6+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y6_6:=spacecurve(0,a6+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y80:=spacecurve(0,a8+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y82:=spacecurve(0,a8+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y84:=spacecurve(0,a8+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y8_2:=spacecurve(0,a8+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y8_4:=spacecurve(0,a8+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y8_6:=spacecurve(0,a8+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y_20:=spacecurve(0,a_2+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y_22:=spacecurve(0,a_2+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y_24:=spacecurve(0,a_2+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y_26:=spacecurve(0,a_2+r*cos(t),b6+r*sin(t),t=0.2*Pi,color=blue):y_28:=spacecurve(0,a_2+r*cos(t),b8+r*sin(t),t=0.2*Pi,color=blue):y_2_2:=spacecurve(0,a_2+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y_2_4:=spacecurve(0,a_2+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y_2_6:=spacecurve(0,a_2+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y_2_8:=spacecurve(0,a_2+r*cos(t),b_8+r*sin(t),t=0.2*Pi,color=blue):y_40:=spacecurve(0,a_4+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y_42:=spacecurve(0,a_4+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y_44:=spacecurve(0,a_4+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y_46:=spacecurve(0,a_4+r*cos(t),b6+r*sin(t),t=0.2*Pi,color=blue):y_48:=spacecurve(0,a_4+r*cos(t),b8+r*sin(t),t=0.2*Pi,color=blue):y_4_2:=spacecurve(0,a_4+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y_4_4:=spacecurve(0,a_4+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y_4_6:=spacecurve(0,a_4+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y_4_8:=spacecurve(0,a_4+r*cos(t),b_8+r*sin(t),t=0.2*Pi,color=blue):y_60:=spacecurve(0,a_6+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y_62:=spacecurve(0,a_6+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y_64:=spacecurve(0,a_6+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y_66:=spacecurve(0,a_6+r*cos(t),b6+r*sin(t),t=0.2*Pi,color=blue):y_6_2:=spacecurve(0,a_6+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y_6_4:=spacecurve(0,a_6+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y_6_6:=spacecurve(0,a_6+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y_80:=spacecurve(0,a_8+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y_82:=spacecurve(0,a_8+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y_84:=spacecurve(0,a_8+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y_8_2:=spacecurve(0,a_8+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y_8_4:=spacecurve(0,a_8+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y_8_6:=spacecurve(0,a_8+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):h00:=plot3d(b0+r*cos(t)*sin(u),a0+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h02:=plot3d(b2+r*cos(t)*sin(u),a0+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h04:=plot3d(b4+r*cos(t)*sin(u),a0+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h06:=plot3d(b6+r*cos(t)*sin(u),a0+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h08:=plot3d(b8+r*cos(t)*sin(u),a0+r*sin(t),(b8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h0_2:=plot3d(b_2+r*cos(t)*sin(u),a0+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h0_4:=plot3d(b_4+r*cos(t)*sin(u),a0+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h0_6:=plot3d(b_6+r*cos(t)*sin(u),a0+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h0_8:=plot3d(b_8+r*cos(t)*sin(u),a0+r*sin(t),(b_8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h20:=plot3d(b0+r*cos(t)*sin(u),a2+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h22:=plot3d(b2+r*cos(t)*sin(u),a2+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h24:=plot3d(b4+r*cos(t)*sin(u),a2+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h26:=plot3d(b6+r*cos(t)*sin(u),a2+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h28:=plot3d(b8+r*cos(t)*sin(u),a2+r*sin(t),(b8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h2_2:=plot3d(b_2+r*cos(t)*sin(u),a2+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h2_4:=plot3d(b_4+r*cos(t)*sin(u),a2+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h2_6:=plot3d(b_6+r*cos(t)*sin(u),a2+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h2_8:=plot3d(b_8+r*cos(t)*sin(u),a2+r*sin(t),(b_8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h40:=plot3d(b0+r*cos(t)*sin(u),a4+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h42:=plot3d(b2+r*cos(t)*sin(u),a4+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h44:=plot3d(b4+r*cos(t)*sin(u),a4+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h46:=plot3d(b6+r*cos(t)*sin(u),a4+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h48:=plot3d(b8+r*cos(t)*sin(u),a4+r*sin(t),(b8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h4_2:=plot3d(b_2+r*cos(t)*sin(u),a4+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h4_4:=plot3d(b_4+r*cos(t)*sin(u),a4+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h4_6:=plot3d(b_6+r*cos(t)*sin(u),a4+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h4_8:=plot3d(b_8+r*cos(t)*sin(u),a4+r*sin(t),(b_8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h60:=plot3d(b0+r*cos(t)*sin(u),a6+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h62:=plot3d(b2+r*cos(t)*sin(u),a6+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h64:=plot3d(b4+r*cos(t)*sin(u),a6+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h66:=plot3d(b6+r*cos(t)*sin(u),a6+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h6_2:=plot3d(b_2+r*cos(t)*sin(u),a6+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h6_4:=plot3d(b_4+r*cos(t)*sin(u),a6+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h6_6:=plot3d(b_6+r*cos(t)*sin(u),a6+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h80:=plot3d(b0+r*cos(t)*sin(u),a8+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h82:=plot3d(b2+r*cos(t)*sin(u),a8+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h84:=plot3d(b4+r*cos(t)*sin(u),a8+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h8_2:=plot3d(b_2+r*cos(t)*sin(u),a8+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h8_4:=plot3d(b_4+r*cos(t)*sin(u),a8+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_20:=plot3d(b0+r*cos(t)*sin(u),a_2+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_22:=plot3d(b2+r*cos(t)*sin(u),a_2+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_24:=plot3d(b4+r*cos(t)*sin(u),a_2+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_26:=plot3d(b6+r*cos(t)*sin(u),a_2+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_28:=plot3d(b8+r*cos(t)*sin(u),a_2+r*sin(t),(b8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_2_2:=plot3d(b_2+r*cos(t)*sin(u),a_2+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_2_4:=plot3d(b_4+r*cos(t)*sin(u),a_2+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_2_6:=plot3d(b_6+r*cos(t)*sin(u),a_2+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_2_8:=plot3d(b_8+r*cos(t)*sin(u),a_2+r*sin(t),(b_8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_40:=plot3d(b0+r*cos(t)*sin(u),a_4+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_42:=plot3d(b2+r*cos(t)*sin(u),a_4+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_44:=plot3d(b4+r*cos(t)*sin(u),a_4+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_46:=plot3d(b6+r*cos(t)*sin(u),a_4+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_48:=plot3d(b8+r*cos(t)*sin(u),a_4+r*sin(t),(b8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_4_2:=plot3d(b_2+r*cos(t)*sin(u),a_4+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_4_4:=plot3d(b_4+r*cos(t)*sin(u),a_4+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_4_6:=plot3d(b_6+r*cos(t)*sin(u),a_4+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_4_8:=plot3d(b_8+r*cos(t)*sin(u),a_4+r*sin(t),(b_8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_60:=plot3d(b0+r*cos(t)*sin(u),a_6+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_62:=plot3d(b2+r*cos(t)*sin(u),a_6+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_64:=plot3d(b4+r*cos(t)*sin(u),a_6+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_66:=plot3d(b6+r*cos(t)*sin(u),a_6+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_6_2:=plot3d(b_2+r*cos(t)*sin(u),a_6+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_6_4:=plot3d(b_4+r*cos(t)*sin(u),a_6+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_6_6:=plot3d(b_6+r*cos(t)*sin(u),a_6+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_80:=plot3d(b0+r*cos(t)*sin(u),a_8+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_82:=plot3d(b2+r*cos(t)*sin(u),a_8+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_84:=plot3d(b4+r*cos(t)*sin(u),a_8+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_8_2:=plot3d(b_2+r*cos(t)*sin(u),a_8+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_8_4:=plot3d(b_4+r*cos(t)*sin(u),a_8+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h02,h04,h06,h08,h0_2,h0_4,h0_6,h0_8,h20,h22,h24,h26,h28,h2_2,h2_4,h2_6,h2_8,h40,h42,h44,h46,h48,h4_2,h4_4,h4_6,h4_8,h60,h62,h64,h66,h6_2,h6_4,h6_6,h80,h82,h84,h8_2,h8_4,h_20,h_22,h_24,h_26,h_28,h_2_2,h_2_4,h_2_6,h_2_8,h_40,h_42,h_44,h_46,h_48,h_4_2,h_4_4,h_4_6,h_4_8,h_60,h_62,h_64,h_66,h_6_2,h_6_4,h_6_6,h_80,h_82,h_84,h_8_2,h_8_4,scaling=constrained);,旋转体体积计算公式的几何意义 20,display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h04,h08,h0_4,h0_8,h22,h26,h2_2,h2_6,h44,h48,h4_4,h4_8,h62,h66,h6_2,h6_6,h80,h84,h8_4,h_20,h_24,h_28,h_2_4,h_2_8,h_44,h_48,h_4_4,h_4_8,h_62,h_66,h_6_2,h_6_6,h_80,h_84,h_8_4,scaling=constrained);,旋转体体积计算公式的几何意义 21,display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h08,h0_8,h26,h2_6,h44,h4_4,h62,h6_2,h80,h84,h8_4,h_20,h_28,h_2_8,h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,scaling=constrained);,旋转体体积计算公式的几何意义 22,display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y4

    注意事项

    本文(用二重积分计算旋转体体积的几何解释.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开