欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    曲线运动的描述.ppt

    • 资源ID:6365424       资源大小:656.50KB        全文页数:27页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    曲线运动的描述.ppt

    1.2 平面曲线运动的描述,质点的运动总是要经过一定的轨道.曲线运动是常见的运动形式.本节只研究平面曲线运动.,描述质点的曲线运动,就是要找出质点在曲线运动过程中的位置、速度、加速度及运动方程等的数学表示形式。,在曲线上任意选一个点作为原点,沿着曲线建立一个弯曲的坐标轴,并沿着曲线指定一个正方向(人为的,随意的),这样就建立了自然坐标系.,1 平面自然坐标系,沿轨道切线,指向运动的一方.,P点的位置不同,二者的方向往往不同.,指向曲线的凹侧,.,不是恒矢量.,?,单位矢量,2 质点的位置,位置是时间的函数:s=s(t),位置坐标用距离原点的弧长表示,位置坐标可正可负.,自然坐标系下的运动学方程,P1,3 质点的速度,P2,s,自然坐标系中,速度仅有切向分量,-自然坐标系,t,t+t,-直角坐标系,t0时,P2,4 质点的加速度,P1,t时刻:,t+t时刻:,A,B,C,D,AC上截取AD=AB,连接BD.,当t0时,0,则ABD90,即,当t0时,t0时,是速度增量的切向分量,由速度大小变化引起。是速度增量的法向分量,由速度方向变化引起。,加速度的方向总是指向曲线凹进去的一侧.,切向加速度tangential acceleration,法向加速度normal acceleration,自然坐标系,直角坐标系,-v是速度大小,对于作曲线运动的物体,以下几种说法正确的是:(A)切向加速度必不为零;(B)法向加速度必不为零(拐点处除外);(C)由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零;(D)若物体作匀速率运动,其总加速度必为零;(E)若物体的加速度 为恒矢量,它一定作匀变速率运动.,例题1 一球以30ms-1的速度水平抛出,试求5s钟后加速度的切向分量和法向分量。,解:由题意可知,小球作平抛运动,运动方程为,速度在坐标轴上的分量为,时刻速度的大小为,t时刻切向加速度的大小为,切向加速度与法向加速度满足关系,且互相垂直,则法向加速度为:,代入数据,得,例题2 质点在oxy平面内运动,其运动方程为 求:(1)质点的轨迹方程;(2)在t1=1.00s到t2=2.00s时间内的平均速;(3)t1=1.00s时的速度及切向和法向加速度.,消去t得质点的轨迹方程:,(2)在t1=1s到t2=2s时间内的平均速度,(3)质点在任意时刻的速度和加速度分别为:,则t1=1s时的速度为:,切向和法向加速度分别为:,1.3 圆周运动及其描述,运动的线量描述:位置 位移 速度 加速度(直角坐标系,自然坐标系)运动的角量描述:角位置 角位移 角速度 角加速度(用极坐标系描述圆周运动),一 圆周运动的线量描述,圆周运动是一种特殊的曲线运动,因而关于曲线运动的描述完全适用于圆周运动的描述。,位置 s=s(t),速度,R是圆的半径,而v则是质点做圆周运动的速率.如果圆周运动的切向加速度为0,就是匀速圆周运动.,加速度,用平面自然坐标系描述:,O,1 极坐标系,极轴,以圆心O为极点,沿着任意方向引出一条线作为极轴,就建立了极坐标系.,2 角位置 矢径 与极轴的夹角.,3 角位移 t 时间内转过的角度.,角位移的方向 右手定则判定四指沿着质点运动方向弯曲,拇指指向为其正向.,二 圆周运动的角量描述,运动方程=(t),先绕 x 轴转/2,再绕 y 轴转/2.,最后的效果是不一样的.,先绕 y 轴转/2,再绕 x 轴转/2.,有限大小的角位移不是矢量不符合交换律,无限小的角位移 才是矢量.,4.角速度(angular velocity),5.角加速度(angular acceleration),三 圆周运动中线量与角量的关系,右手定则判定方向.,四 匀变速圆周运动与匀变速直线运动的比较,描述质点的位置只需要一个标量即可.于是,二维运动退化为一维运动;匀变速圆周运动的角加速度是恒量,因而运动规律与匀变速直线运动相似.,匀变速圆周运动,匀变速直线运动,求:(1)t 时刻其速度为多少?(2)其切向加速度的大小为多少?(3)该质点运动的轨迹是什么?,例题3 在xy平面内有一运动质点,其运动学方程为:,解:(1),(2),(3),两式平方后相加,,轨迹为一半径为10m的圆.,解:,例题4 一质点作圆周运动,半径为R,其路程与时间的关系为,v0和 b 都是常量。求:(1)质点在 t 时刻的速度;(2)t为何值时,质点的切向加速度和法向加速度 的大小相等。,分析:掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到。,例题5 一质点在半径为0.10m的圆周上运动,其角位置 求(1)在t=2.0s时法向加速度和切向加速度;(2)当切向加速度的大小恰等于总加速度大小的一半时,值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等。,解:(1)由于,则角速度,在t=2s时,法向加速度和切向加速度的数值分别为,(2)当 时,有 即,此时刻的角位置为,(3)要使,则有,解得,例题6 一半径为0.50m的飞轮在启动时的短时间内,其角速度与时间的平方成正比。在t=2.0s时测得轮缘一点的速度为-1。求(1)该轮在t=0.50s时的角速度,轮缘一点的切向 加速度和总加速度;(2)该点在2.0s内所转过的角度。,解:(1)由题意=k t 2,所以=(t)=2t2,t=0.5s时角速度、角加速度和切向加速度分别为,总加速度,(2)在2.0s内该点所转过的角度,例题7 一质点P沿半径R=3.00m的圆周作匀速率运动,运动一周所需时间为20.0s,设t=0时,质点位于o点,按图中所示oxy坐标系,求:(1)质点P在任意时刻的位矢;(2)5s时的速度和加速度.,如图所示,在 坐标系中,因,则质点P的参数方程为,坐标变换后,在oxy坐标系中有:,解:,则质点P的位矢方程为:,5s时的速度和加速度分别为:,

    注意事项

    本文(曲线运动的描述.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开