欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    晶体X射线衍射分析.ppt

    • 资源ID:6365378       资源大小:3.01MB        全文页数:131页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    晶体X射线衍射分析.ppt

    晶体X射线衍射分析,简介,基础知识 衍射理论 实验方法 衍射分析应用,物质的性质、材料的性能决定于它们的组成和微观结构。如果你有一双X射线的眼睛,就能把物质的微观结构看个清清楚楚明明白白!X射线衍射将会有助于你探究为何成份相同的材料,其性能有时会差异极大.X射线衍射将会有助于你找到获得预想性能的途径。,X射线衍射术是一种应用于材料分析的高科技无损检测方法,可以采用这种方法进行分析研究的材料范围非常广泛,包括流体、金属、矿物、聚合物、催化剂、塑料、药物、薄膜镀层、陶瓷和半导体等。X射线衍射方法的应用遍及工业和科研院所,现已成为一种不可缺少的材料研究表征和质量控制手段。具体应用范围包括定性和定量相分析、结晶学分析、结构解析、织构和残余应力分析、受控样品环境、微区衍射、纳米材料、实验和过程的自动控制以及高处理量多形体筛选。,X射线衍射(X-RAY Diffraction)是利用X射线在晶体中的衍射现象来分析材料的晶体结构、晶格参数、晶体缺陷(位错、堆垛层错、微应变等),不同结构相的含量及内应力的方法。这种方法是建立在一定晶体结构模型基础上的间接方法。既根据与晶体样品产生衍射的X射线信号的特征去分析计算出样品的晶体结构与晶格参数,并达到很高的精度。,缺点:由于它不象显微镜那样直观可见地观察,因此无法把形貌观察与晶体结构分析微观同位地结合起来。由于X射线聚焦困难,所能分析样品的最小区域(光域)在毫米数量级,因此对微米及纳米级的微观区域进行单独选择性分析无能为力。,基 础 知 识,X射线的发现衍射分析技术的发展X射线的产生X射线的本质,X射线的发现,第一 个诺贝尔物理奖1901年授予伦琴Wilhelm KonradRontgen,9,发展了X射线的衍射理论,1912年劳埃(Laue)以晶体为光栅,发现了X射线的衍射现象,确定了X射线的电磁波性质。,开创了人类认识物质微观结构的新纪元,Laue的理论随即为实验所验证。1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式布拉格方程。,衍射分析技术的发展,与X射线及晶体衍射有关的部分诺贝尔奖获得者名单,X射线的发展阶段,初 期 从1916年Dedye提出方法到20世纪40年代。实验技术是以照相底片作记录介质的各种照相机。主要工作是用来解晶体结构,曾成功测定了一些简单化合物的结构。但在这一时期,实验方法是照相法,衍射强度需要用测微光度计从照相底片上测量,不易测准,达不到准确度要求,且也比较麻烦,因此,物相的定量和定性分析发展缓慢。,X射线的发展阶段,中 期 从20世纪40年代后期至70年代后期,其标志是用计数器作为X射线探测器取代了用底片的照相机成为主要的实验仪器。由于X射线衍射谱质量的提高,特别是衍射强度准确性的提高,使物相分析在这时期得到较快发展。,X射线的发展阶段,近 代 从20世纪70年代后期至今。以计算机应用于X射线多晶衍射、全谱拟合法处理数据以及同步辐射X射线衍射技术的应用为标志。,(1)产生原理;(2)产生条件;(3)过程演示;,X射线的产生,产生原理,高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1左右)能量转变为X射线,而绝大部分(99左右)能量转变成热能使物体温度升高。,产生条件,1.产生自由电子;2.使电子作定向的高速运动;3.在其运动的路径上设置一个障碍物使电子突然减速或停止。,接变压器,玻璃,钨灯丝,金属聚灯罩,铍窗口,金属靶,冷却水,电子,X射线,X射线,X射线管剖面示意图,过程演示,X射线发生器的种类,X射线管特殊的高压真空二级管旋转阳极已有管流100mA,管压100KV同步辐射具有宽波段、高准值、高偏振、高纯净、高亮度、窄脉冲、可精确预知。脉冲X射线发生器用于研究生物、相变及其他动态过程极为有利。,X射线的本质,X射线的本质是电磁辐射,与可见光完全相同,仅是波长短而已,因此具有波粒二像性。,(1)波动性;(2)粒子性。,X射线X-ray,晶体crystal,劳厄斑Laue spots,波动性,X射线的波长范围:0.01100 表现形式:在晶体作衍射光栅观察到的X射线的衍射现象,即证明了X射线的波动性。,粒子性,特征表现为以光子形式辐射和吸收时具有的一定的质量、能量和动量。表现形式为在与物质相互作用时交换能量。如光电效应;二次电子等。X射线的频率、波长以及其光子的能量、动量p之间存在如下关系:式中:h普朗克常数,等于6.625 J.s;cX射线的速度,等于2.998 cm/s.,衍射理论,序言关于本章节的研究对象衍射几何理论衍射强度理论,导言:,利用x射线研究晶体结构中的各类问题,主要是通过X射线在晶体中产生的衍射现象。当一束X射线照射到晶体上时,首先被电子所散射,每个电子都是一个新的辐射波源,向空间辐射出与入射波同频率的电磁波。可以把晶体中每个原子都看作一个新的散射波源,它们各自向空间辐射与入射波同频率的电磁波。由于这些散射波之间的干涉作用,使得空间某些方向上的波则始终保持相互叠加,于是在这个方向上可以观测到衍射线,而另一些方向上的波则始终是互相是抵消的,于是就没有衍射线产生。,晶体所产生的衍射花样都反映出晶体内部的原子分布规律。概括地讲,一个衍射花样的特征,可以认为由两个方面的内容组成:一方面是衍射线在空间的分布规律,(称之为衍射几何),衍射线的分布规律是晶胞的大小、形状和位向决定 另一方面是衍射线束的强度,衍射线的强度则取决于原子的品种和它们在晶胞中的位置。X射线衍射理论所要解决的中心问题:在衍射现象与晶体结构之间建立起定性和定量的关系。,X射线衍射的几何原理,晶体点阵对X射线的衍射干涉函数劳厄方程布拉格定律衍射矢量方程和厄尔瓦德图解,布喇格定律 Braggs law,1913年英国布喇格父子(W.H.bragg.WLBragg)建立了一个公式-布喇格公式。不但能解释劳厄斑点,而且能用于对晶体结构的研究。,布喇格父子认为当能量很高的X射线射到晶体各层面的原子时,原子中的电子将发生强迫振荡,从而向周围发射同频率的电磁波,即产生了电磁波的散射,而每个原子则是散射的子波波源;劳厄斑正是散射的电磁波的叠加。,Adding“reflection”rays from the entire family planes,An incident wave(wavelength)strikes the planes“1”and“2”,AB and AC verticalwith lights a and brespectively.,The condition of a constructive interference:,This relation is called Braggs law.,The path difference for rays from adjacent planes:,此公式为实验证实且可解释劳厄斑点。,Braggs law,discuss讨论:,A)with particular d and,the maximum diff-raction can only be seen on particular directions.,B)with particular d and,the maximum diffraction can only be made with particular wavelengths,对衍射而言,n的最小值为1,所以在任何可观测的衍射角下,产生衍射的条件为2d,这也就是说,能够被晶体衍射的电磁波的波长必须小于参加反射的晶面中最大面间距的二倍,否则不能产生衍射现象。,立方晶系,正方晶系,斜方晶系,衍射花样和晶体结构的关系,从布拉格方程可以看出,在波长一定的情况下,衍射线的方向是晶面间距d的函数。,布拉格方程可以反映出晶体结构中晶胞大小及形状的变化,但是并未反映出晶胞中原子的品种和位置。,(a)体心立方 a-Fe a=b=c=0.2866 nm,(b)体心立方 Wa=b=c=0.3165 nm,不同 晶系或统一晶系而晶胞大小不同的晶体,其衍射线束的方向不相同,因此研究衍射线束的方向可以晶胞的形状与大小。,(d)体心正交:a=0.286nm,b=0.300nm,c=0.320nm,(e)面心立方:g-Fe a=b=c=0.360nm,(c)体心四方a=b=0.286nm,c=0.320nm,衍射强度理论,在理论上以检测点处通过单位截面积上衍射线的功率定义为某衍射线的强度(绝对积分强度)。在实际工作主要是比较衍射强度的相对变化。,结构因子,仅与原子种类和原子在晶胞中的位子有关,而与晶胞的形状大小无关。,一个电子对X射线的散射,一个原子对X射线的散射,一个晶胞对X射线的散射,粉末多晶对X射线的散射,A(),由于试样的形状的衍射方向不同,衍射线在晶体中穿行的路径不同,式样对X射线的吸收不同,对衍射线的强度影响也不同,圆柱试样 越大,吸收越少,衍射线的轻强度越大,A()越大平板试样,则与无关,正比与1/2,吸收因子,依试验方法和试样的形状不同而异,角因子,偏振因子,反映了单个电子对X射线衍射的特点。,洛伦兹因子,反映了试样中参加衍射的晶粒大小,晶粒的数目和衍射位置对衍射强度的影响。,晶粒大小对衍射强度的影响,,参加衍射的晶粒数目的影响,,多重性因子,衍射线的强度正比与参与衍射的晶面数目,参加衍射的镜面数目又取决与两个因素,晶粒的数目和晶粒中具有相同面间距的镜面的数目。,P,由于晶体的对称性不同,一个晶体中具有相同晶面间距的晶面数目是不同的。因此用多重性因子进行修正。,晶面的多重性因子大,参加衍射的概率就大,他们对衍射强度的贡献就大。其大小与晶体的对称性和晶系有关。,温度因子,温度升高引起晶胞膨胀,d的改变导致2改变。衍射线强度减小。产生各个方向的散射的非相干散射。使背底增强。,为了修正热振动给衍射带来的影响。,一定时,温度T越高,温度因子越小,衍射强度减小。T一定时,衍射角越大,M越大,衍射因子越小,衍射强度越小。,强度理论的应用,相对强度公式,(1)物相的定量分析,结晶度的测定(2)平衡相图的相界的测定;(3)第三类应力的测定;(4)有序固溶体长程有序度的测定;,在同一衍射花样中,e、m、c为固定的物理常数,I0、R、V0和V对同一物相各衍射线均相等。,实验 方 法,主要目的是研究X-ray和晶体的交互作用来了解晶体的结构与缺陷。从产生衍射的原理分:劳厄法(取向)、转动晶体法(单晶相分析)、多晶体粉末法 从实验使用的X-ray谱分:单色光法、多色光法从入射X-ray束发散否分:平行光束法、发散光束法,实验方法,从衍射的接收探测系统分:照相法、衍射仪法 掠入射X-ray散射(GIXS)小角X-ray散射(SAXS)扩展X-ray吸收精细结构(EXAFS),Debye照相法,?,?,1953年,用于测定“DNA”脱氧核糖核酸的双螺旋结构就是用的此法。,原理:,X射线分析仪,世界闻名的事件:,衍射仪法,D/max-3BX射线衍射仪(日本理学制造)。,高分辨衍射仪(D8-Discovre型,Bruker公司1999年产品),配备GADDS的D8 DISCOVER的关键硬件部分是已获准专利的自动化激光视频定位系统和HI-STAR面探测器:这两个部件可以对样品特征进行精确定位并运用快速拍摄或摄影模式进行瞬时分析。HI-Star探测器特有的高灵敏度可以使数据的衍射峰与背底的比值接近理论极限。,小角 X射线散射(Small-Angle X-ray Scattering)是一种用于纳米结构材料的可靠而且经济的无损分析方法。SAXS能够给出1-100纳米范围内的颗粒尺度和尺度分布以及液体、粉末和块材的形貌和取向分布等方面的信息。具的高强度、平行初级光束和二维探测器,而与同步辐射SAXS光束具有相似的设计。使用二维探测器避免了零维和一维探测器在数据采集时产生的数据误差并除去了对样品限制性初始假定的必要。事实上,NANOSTAR可以分析并澄清样品的性质,甚至在样品颗粒不对称或表现有择优取向的情况下。,NANOSTAR,新一代的探测器,采用扫描积分技术,对收集的数据进行累计积分,极大地提高了数据采集速度、检测强度。目前速度最快的探测器,几十秒到几分钟测量一个样品。,万特一维探测器,xPert-MPD 多功能X-射线衍射仪,衍 射 分 析 应 用,任何一个衍射峰都是由五个基本要素组成的(见图1,2),即衍射峰的位置(图1中的峰位),最大衍射强度(图1中Imax),半高宽,形态(图1中的峰形态,通常,衍射峰可具有Gauss,Cauchy,Voigt或Pearson VII分布)及对称性或不对称性(图2 A为左右半高宽不对称;B为左右形态不对称;C为左右半高宽与形态不对称;D为上下不对称;以及任意不对称;完全对称即图1)。这五个基本要素都具有其自身的物理学意义。,峰形态,峰位,峰半高宽,Imax,Gauss,Cauchy,Voigt,Pearson VII,衍射峰的物理学意义,衍射峰位置是衍射面网间距的反映(即Bragg定理);最大衍射强度是物相自身衍射能力强弱的衡量指标及在混合物当中百分含量的函数(Moore and Reynolds,1989);,衍射峰的物理学意义,半高宽及形态是晶体大小与应变的函数(Stokes and Wilson,1944);衍射峰的对称性是光源聚敛性(Alexander,1948)、样品吸收性(Robert and Johnson,1995)、仪器机戒装置等因素及其他衍射峰或物相存在的函数(Moore and Reynolds,1989;Stern et al.,1991)。因此只有衍射峰(hkl)的半高宽()、积分宽度(IW)或垂直该衍射方向的平均厚度(L)和应变大小(AStrainn),或消除应变效应后的垂直该衍射方向平均厚度(ASizen)才可描述结晶度的好坏。其他衍射参数或指标都不可用于描述结晶度的好坏程度,衍射分析应用,基于衍射蜂位置的应用 点阵参数的精确测定,膨胀系数的测定;第一类(即宏观残余)应力的测定;由点阵参数测定相平衡图中的相界;晶体取向的测定;固溶体类型的测定,固溶体组分的测定;多晶材料中层错几率的测定;点缺陷引起的Bragg峰的漂移。,基于衍射强度测量的应用(1)物相的定量分析,结晶度的测定(2)平衡相图的相界的测定;(3)第三类应力的测定;(4)有序固溶体长程有序度的测定;(5)多晶体材料中晶粒择优取向的极图、反极图和三维取向分布的测定;(6)薄膜厚度的测定。,基于衍射线型分析的应用(1)多晶材料中位错密度的测定,层错能的测定,晶体缺陷的研究;(2)第二类(微观残余)应力的测定;(3)晶粒大小和微应变的测定;,hkl=B b,晶粒大小与衍射峰宽之间满足谢乐(Scherrer)公式:,垂直于晶面hkl方向的平均厚度,衍射峰的半高宽,晶体形状有关的常数,常取0.89,hkl必须进行双线校正和仪器因子校正,实测样品衍射峰半高宽,仪器致宽度,基于衍射位置和强度的测定(1)物相的定性分析(2)相消失法测定相平衡图中的相界;(3)晶体(相)结构,磁结构,表面结构,界面结构的研究,同时基于衍射位置、强度和线型的Rietveld多晶结构测定 需输入原子参数(晶胞中各原子的坐标、占位几率和湿度因子)、点阵参数、波长、偏正因子、吸收系数、择优取向参数等。,X射线物相分析,材料或物质的组成包括两部分:一是确定材料的组成元素及其含量;二是确定这些元素的存在状态,即是什么物相。材料由哪些元素组成的分析工作可以通过化学分析、光谱分析、X射线荧光分析等方法来实现,这些工作称之成份分析。材料由哪些物相构成可以通过X射线衍射分析加以确定,这些工作称之物相分析或结构分析。,X射线物相分析,例如对于钢铁材料(Fe-C合金),成份分析可以知道其中C%的含量、合金元素的含量、杂质元素含量等等。但这些元素的存在状态可以不同,如碳以石墨的物相形式存在形成的是灰口铸铁,若以元素形式存在于固溶体或化合物中则形成铁素体或渗碳体。究竟Fe-C合金中存在哪些物相则需要物相分析来确定。用X射线衍射分析可以帮助我们确定这些物相;进一步的工作可以确定这些物相的相对含量。前者称之X射线物相定性分析,后者称之X射线物相定量分析,X射线物相定性分析原理,X射线物相分析是以晶体结构为基础,通过比较晶体衍射花样来进行分析的。对于晶体物质中来说,各种物质都有自己特定的结构参数(点阵类型、晶胞大小、晶胞中原子或分子的数目、位置等),结构参数不同则X射线衍射花样也就各不相同,所以通过比较X射线衍射花样可区分出不同的物质。,X射线物相定性分析原理,当多种物质同时衍射时,其衍射花样也是各种物质自身衍射花样的机械叠加。它们互不干扰,相互独立,逐一比较就可以在重叠的衍射花样中剥离出各自的衍射花样,分析标定后即可鉴别出各自物相。,X射线物相定性分析原理,目前已知的晶体物质已有成千上万种。事先在一定的规范条件下对所有已知的晶体物质进行X射线衍射,获得一套所有晶体物质的标准X射线衍射花样图谱,建立成数据库。当对某种材料进行物相分析时,只要将实验结果与数据库中的标准衍射花样图谱进行比对,就可以确定材料的物相。X射线衍射物相分析工作就变成了简单的图谱对照工作。,X射线物相定性分析,1938年由Hanawalt提出,公布了上千种物质的X射线衍射花样,并将其分类,给出每种物质三条最强线的面间距索引(称为Hanawalt索引)。1941年美国材料实验协会(The American Society for Testing Materials,简称ASTM)提出推广,将每种物质的面间距d和相对强度I/I1及其他一些数据以卡片形式出版(称ASTM卡),公布了1300种物质的衍射数据。以后,ASTM卡片逐年增添。,X射线物相定性分析,1969年起,由ASTM和英、法、加拿大等国家的有关协会组成国际机构的“粉末衍射标准联合委员会”,负责卡片的搜集、校订和编辑工作,所以,以后的卡片成为粉末衍射卡(the Powder Diffraction File),简称PDF卡,或称JCPDS卡(the Joint Committee on Powder Diffraction Standarda)。,定性相分析的判据,通常用d(晶面间距表征衍射线位置)和I(衍射线相对强度)的数据代表衍射花样。用d-I数据作为定性相分析的基本判据。,定性相分析方法是将由试样测得的d-I数据组与已知结构物质的标准d-I数据组(PDF卡片)进行对比,以鉴定出试样中存在的物相。,卡片的顺序号,卡片序号,三条最强线及第一条线d值和强度,化学式及名称,数据的可信度:星号,i,O,空白,C,R,靶材及波长,单色器类型:石墨单色器或滤波片,相机直径,实验方法能测到的最大d值,衍射强度的检测方式,样品最强线与刚玉最强线强度比(50/50),参考文献,晶系,空间群,Pna21,晶胞参数,a/b和c/b值,单胞化学式量数,理论密度,光学数据,粉末衍射卡片的索引,在实际的X射线物相分析工作中,通过比对方法从浩瀚的物质海洋中鉴别出实验物质的物相决非易事。为了从几万张卡片中快速找到所需卡片,必须使用索引书。目前所使用的索引有以下二种编排方式:(1)数字索引(2)字母索引,(1)数字索引,Hanawalt数字索引是将已经测定的所有物质的三条最强线的d1值从大到小的顺序分组排列,目前共分45组。在每组内则按次强线的面间距d2减小的顺序排列。考虑到影响强度的因素比较复杂,为了减少因强度测量的差异而带来的查找困难,索引中将每种物质列出三次,一次将三强线以d1 d2d3的顺序列出,然后又在索引书的其他地方以d2 d3 d1和d3 d1 d2的顺序再次列出。每条索引包括物质的三强线的d和I/I1、化学式、名称及卡片的顺序号,例如在索引书中可以查到:,Hanawalt数字索引,i 2.497 2.89x 2.659 2.367 2.166 1.886 1.456 1.456 Sr2VO4Br 22-1445 1-158-E2 2.49x 2.898 2.51x 5.077 3.546 2.046 1.776 2.035 KMnCl3 18-1034 1-97-E12 2.53x 2.88x 2.608 3.364 1.714 1.514 3.013 2.323 CaAl1.9O4C0.4 21-130 1-132-B12 2.53x 2.88x 2.58x 2.777 1.665 1.432 1.952 1.542 Zn5In2O8 20-1440 1-130-C12C 2.52x 2.877 2.607 2.656 3.126 5.045 3.183 2.643 C2H2K2O6 22-845 1-152-E12,Fink数字索引,随着被测标准物质的增加,卡片数量增多,因此,用三强线检索时常得出多种结果。为了克服这一困难,又出现Fink索引。该索引是用8强线循环排列组成,故所占篇幅太大,1977年产生了改进型的Fink索引,它仍以8强线作为一物质的代表而成,不过,在8个d值中d1 d2 d3和d4为最强线,然后再从剩下的线条中按强度递减的顺序选出4个附于其后。每条索引的顺序是:附有强度脚标的8个d值,化学式,卡片编号,显微检索顺序号(72年的索引述中才有显微检索顺序号)。脚标标明的强度分为10级,最强者为10,以X标注,其余则直接标明数字。,字母索引,在不少物相分析工作中,被测物的化学成分或被测物中可能出现的相常常是知道的。在此情况下,利用字母索引能迅速地检索出各可能相的卡片,使分析工作大为简化。Davey字母索引是按物质的英文名称的首字母的顺序编排的。在索引中每一物质的名称占一行,其顺序是:名称、化学式、三强线晶面间距、卡片顺序号和显微检索顺序号(72年的索引述中才有显微检索顺序号)。例如:,字母索引,i Copper Molybdenum Oxide CuMoO4 3.72x 3.268 2.717 22-242 1-147-B12 Copper Molybdenum Oxide Cu3Mo2O9 3.28x 2.638 3.396 22-609 1-150-D9无机字母索引由化学名称索引和矿物名称索引两部分组成。无论按物质的化学名称或矿物名称均可查出卡片编号。,物相定性分析方法,如待分析试样为单相,在物相未知的情况下可用Hanawalt索引或Fink索引进行分析。用数字索引进行物相鉴定步骤如下:1 根据待测相的衍射数据,得出三强线的晶面间距值d1、d2和d3(并估计它们的误差)。2 根据最强线的面间距d1,在数字索引中找到所属的组,再根据d2和d3找到其中的一行。,物相定性分析方法,3 比较此行中的三条线,看其相对强度是否与被摄物质的三强线基本一致。如d和I/I1都基本一致,则可初步断定未知物质中含有卡片所载的这种物质。4 根据索引中查找的卡片号,从卡片盒中找到所需的卡片。5 将卡片上全部d和I/I1与未知物质的d和I/I1对比如果完全吻合,则卡片上记载的物质,就是要鉴定的未知物质。,多相混合物物相定性分析方法,当待分析样为多相混合物时,根据混合物的衍射花样为各相衍射花样的叠加,也可对物相逐一进行鉴定,但手续比较复杂。具体过程为:用尝试的办法进行物相鉴定:先取三强线尝试,吻合则可定;不吻合则从谱中换一根(或二根)线再尝试,直至吻合。对照卡片去掉已吻合的线条(即标定一相),剩余线条归一化后再尝试鉴定。直至所有线条都标定完毕。,待测相的衍射数据,d/I/I1 d/I/I1 d/I/I1 3.01 5 1.50 20 1.04 3 2.47 72 1.29 9 0.98 5 2.13 28 1.28 18 0.91 4 2.09 100 1.22 5 0.83 8 1.80 52 1.08 20 0.81 10,与待测试样中三强线晶面间距符合较好的一些物相,物质 卡片顺序号d/相对强度I/I1待测物质2.091.811.281005020Cu-Be(2.4%)9-2132.101.831.281008080Cu 4-8362.091.811.281004620Cu-Ni9-2062.081.801.271008080Ni3(AlTi)C19-352.081.801.271003520Ni3Al9-972.071.801.271007050,4-836卡片Cu的衍射数据,d/I/I1 d/I/I12.088100 1.0436 51.80846 0.9038 31.27820 0.8293 91.09017 0.8083 8,待测相的衍射数据,d/I/I1 d/I/I1 d/I/I1 3.01 5 1.50 20 1.04 3 2.47 72 1.29 9 0.98 5 2.13 28 1.28 18 0.91 4 2.09 100 1.22 5 0.83 8 1.80 52 1.08 20 0.81 10,剩余线条与Cu2O的衍射数据,待测试样中的剩余线条 5-667号的Cu2O衍射数据 d/I/I1 d/I/I1 观测值 归一值3.01 5 7 3.02092.47 70 100 2.4651002.13 30 40 2.135371.50 20 30 1.510271.29 10 15 1.287171.22 5 7 1.2334 1.067420.98 5 7 0.97954 0.95483 0.87153 0.82163,应用字母索引进行物相鉴定的步骤,1.根据被测物质的衍射数据,确定各衍射线的d值及其相对强度。2.根据试样成分和有关工艺条件,或参考有关文献,初步确定试样可能含有的物相。按照这些物相的英文名称,从字母索引中找出它们的卡片号,然后从卡片盒中找出相应的卡片。3.将实验测得的面间距和相对强度,与卡片上的值一一对比,如果某张卡片的数据能与实验数据的某一组数据吻合,则待分析样中含有卡片记载的物相。同理,可将其他物相一一定出。,物相分析注意事项:,检索未知试样的花样和检索与实验结果相同的花样的过程,本质上是一回事。在物相为3相以上时,人工检索并非易事,此时利用计算机是行之有效的。Johnson和Vand于1986年用FORTRAN编制的检索程序可以在2分钟内确定含有6相的混合物的物相。要注意的是,计算机并不能自动消除式样花样或原始卡片带来的误差。如果物相为3种以上是,计算机根据操作者所选择的d的不同,所选出的具有可能性的花样可能超过50种,甚至更多。所以使用者必须充分利用有关未知试样的化学成分、热处理条件等信息进行甄别。,物相分析注意事项:,理论上讲,只要PDF卡片足够全,任何未知物质都可以标定。但是实际上会出现很多困难。主要是试样衍射花样的误差和卡片的误差。例如,晶体存在择优取向时会使某根线条的强度异常强或弱;强度异常还会来自表面氧化物、硫化物的影响等等。粉末衍射卡片确实是一部很完备的衍射数据资料,可以作为物相鉴定的依据,但由于资料来源不一,而且并不是所有资料都经过核对,因此存在不少错误。尤其是重校版之前的卡片更是如此。美国标准局(NBS)用衍射仪对卡片陆续进行校正,发行了更正的新卡片。所以,不同字头的同一物质卡片应以发行较晚的大字头卡片为准。,物相分析注意事项:,从经验上看,晶面间距d值比相对强度重要。待测物相的衍射数据与卡片上的衍射数据进行比较时,至少d值须相当符合,一般只能在小数点后第二位有分歧。由低角衍射线条测算的d值误差比高角线条要大些。较早的PDF卡片的实验数据有许多是用照相法测得的,德拜法用柱形样品,试样吸收所引起的低角位移要比高角线条大些;相对强度随实验条件而异,目测估计误差也较大。吸收因子与2角有关,所以强度对低角线条的影响比高角线条大。而衍射仪法的吸收因子与2角无关,因此德拜法的低角衍射线条相对强度比衍射仪法要小些,物相分析注意事项:,多相混合物的衍射线条有可能有重叠现象,但低角线条与高角线条相比,其重叠机会较少。倘若一种相的某根衍射线条与另一相的某根衍射线重叠,而且重叠的线条又为衍射花样中的三强线之一,则分析工作就更为复杂。当混合物中某相的含量很少时,或某相各晶面反射能力很弱时,它的衍射线条可能难于显现,因此,X射线衍射分析只能肯定某相的存在,而不能确定某相的不存在。,物相分析注意事项:,任何方法都有局限性,有时X射线衍射分析时往往要与其他方法配合才能得出正确结论。例如,合金钢中常常碰到的TiC、VC、ZrC、NbC及TiN都具有NaCl结构,点阵常数也比较接近,同时它们的点阵常数又因固溶其他合金元素而变化,在此情况下,单纯用X射线分析可能得出错误的结论,应与化学分析、电子探针分析等相配合。,物相定量分析方法,多相物质经定性分析后,若要进一步知道各个组成物相的相对含量,就得进行X射线物相定量分析根据X射线衍射强度公式,某一物相的相对含量的增加,其衍射线的强度亦随之增加,所以通过衍射线强度的数值可以确定对应物相的相对含量。由于各个物相对X射线的吸收影响不同,X射线衍射强度与该物相的相对含量之间不成正比关系,必须加以修正。德拜法中由于吸收因子与2角有关,而衍射仪法的吸收因子与2角无关,所以X射线物相定量分析常常是用衍射仪法进行。,物相定量分析方法原理,对于含n个物相的多相混合的材料,上述强度公式是其中某一j相的一根衍射线条的强度。Vj是j相的体积,是多相混合物的吸收系数。当j相的含量改变时,衍射强度随之改变;吸收系数也随j相含量的改变而改变。上式中其余各项的积Cj不变,是常数。若j相的体积分数为fj,被照射体积V为1,Vj=Vfj=fj,则有:,物相定量分析方法原理,测定某相的含量时,常用质量分数,因此将fj和都变成与质量分数有关的量,则有:上式是定量分析的基本公式,它将第j相某条衍射线的强度跟该相的质量分数及混合物的质量吸收系数联系起来了。该式通过强度的测定可以求第j相的质量分数,但此时必须计算Cj,还应知道各相的m和,这显然十分繁琐。为使问题简化,建立了有关定量分析方法如:外标法、内标法、K值法、直接对比法、绝热法、任意内标法、等强线对法和无标样定量法等。,外标法,外标法是将待测样品中j相的某一衍射线条的强度与纯物质j相的相同衍射线条强度进行直接比较,即可求出待测样品中j相的相对含量。在含n个物相的待测样品中,若各项的吸收系数和均相等,根据(4-6)j相的强度为:纯物质j相的质量分数j=100%=1,其强度为:(Ij)0=C将(4-7)与(4-8)式相比得:,外标法,如果混合物由两相组成,它们的质量吸收系数不相等,则有:两相的质量吸收系数(m)1和(m)2若已知,则实验测出两相混合物中第1相衍射线的强度I1和纯第1相的同一衍射线强度(I1)0之后,由(4-10)式就能求出混合物中第1相的质量分数1。,外标法,混合物试样中j相的某一衍射线的强度,与纯j相试样的同一衍射线条强度之比,等于j相在混合物中的质量分数。例如,当测出混合物中j相的某衍射线的强度为标样同一衍射线强度的30%时,则j相在混合物中的质量分数为30%但是,影响强度的因素比较复杂,常常偏离(4-9)式的线性关系。实际工作中,常按一定比例配制的样品作定标曲线,并用事先作好的定标曲线进行定量分析。,内标法,若混合物中含有n个相,各相的m不相等,此时可往试样中加入标准物质,这种方法称为内标法,也称掺和法。如加入的标准物质用S表示,其质量分数为s;被分析的j相在原试样中的质量分数为j,加入标准物质后为j,则(4-6)式变成:和 故 假如在每次实验中保持s不变,则(1-s)为常数,而j=j(1-s)。对选定的标准物质和待测相,1和s均为常数,因此,(4-11)式可以写成:,内标法的基本公式,Ij/Is与j呈线性关系,K为其斜率。由强度比求待测相含量Wj,必须预先知道K值。,配制至少三个混合试样,各样的标准物质重量分数 ws恒定,j相重量分数已知且不相等。测绘出 Ij/Is-j 曲线,称为工作(或定标)曲线(图1)其斜率即为k值。分析时,待测试样中混入同样重量分数ws的内标物质,制成混合试样,在同样的衍射条件下测出 Ij/Is 值。可利用k值及公式式求出j相重量分数wj,或在工作曲线上查出 wj。,直接比较法,直接比较法测定多相混合物中的某相含量时,是将试样中待测相某衍射线的强度与另一相某衍射线的强度相比较,而不必掺入外来标准物质。因此,它既适用于粉末,又适用于块状多晶试样,在工程上具有广泛的应用价值。常用于测定淬火钢中残余奥氏体的含量。当钢中奥氏体的含量较高时,用定量金相法可获得满意的测定结果。但当其含量低于10%时,其结果不再可靠。磁性法虽然也能测定残余奥氏体,但不能测定局部的、表面的残余奥氏体含量,而且标准试样制作困难。,直接比较法,而X射线测定的是表面层的奥氏体含量,当用通常的滤波辐射时,测量极限为4%5%(体积);当采用晶体单色器时,可达0.1%(体积)。假定在淬火钢中仅含有马氏体和残余奥氏体两相,采用直接比较法测定钢中残余奥氏体含量时,应在同一衍射花样上测定残余奥氏体和马氏体的某对衍射线条的强度比。,直接比较法,根据衍射仪法的强度公式,令 则衍射强度公式为:I=(RK/2)V 由此得马氏体的某对衍射线条的强度为I=(RK/2)V,残余奥氏体的某对衍射线条的强度为I=(RK/2)V。两相强度之比为:残余奥氏体和马氏体的体积分数之和为f+f=1。则可以求得残余奥氏体的百分含量:,直接比较法,如果钢中除残余奥氏体和马氏体外,还有碳化物存在,则可同时测定衍射花样中碳化物的某条衍射线的积分强度Ic,同样可以求得类似于(4-14)的I/Ic强度比关系式。由于f+f+fc=1,则又可以求得残余奥氏体的百分含量:4-16上式在求得fc后即可以求得残余奥氏体的百分含量。钢中碳化物的含量可以用电解萃取方法测定。,计算机在X射线物相分析中的应用,早在60年代人们就开始了在X射线物相分析中应用计算机进行晶体学计算和物相分析。早期建立的算法适宜用于大容量、快速数据处理的计算机。这种方法可以把PDF中的每一个参考图与未知的衍射图进行对比,并能计算出每一次对比的优值,这个优值以匹配d和I时的平均误差为基础,并选出50个匹配最好的图待进一步评估。这种方法有不少缺点,常常导致分析出错。,计算机在X射线物相分析中的应用,60年代是第一代计算机检索算法,到上世纪90年代已经发展第四代算法,此时粉末衍射卡全数值化版本及其CD-ROM产品显著地提高了物相识别与表征的能力。PDF-2版本包含物相的单胞、晶面指数、实验条件等全部数据。该版本包括60,000粉末衍射卡,在PC机上60秒即可以完成所有工作。为了更新PDF卡,现在衍射数据国际中心(ICDD)每年出版一期粉末衍射卡片集(PDF),将新收集的衍射图编入其中。每年还出版一本字母顺序与Hanawalt法的检索手册,而Fenk检索法和常见物相手册则不定期出版。现在衍射粉末卡集已经发展到PDF-4版本,许多X射线衍射仪已经将这些分析方法嵌入仪器设计中,图4-4是岛津公司仪器中分析界面。,计算机在X射线物相分析中的应用,ICDD也出版晶体数据库,这个数据库包括各种已经发表的材料的单胞资料,目前已经收集了大约150,000个单胞。现在已有计算程序可以根据未知物相的衍射图推出单胞,及其可能的超单胞和亚晶胞,然后检索晶体数据库有无该相或可能的同构物相。这个数据库可用于现代计算机指标化程序进行物相识别或者给出可能的结构模型。根据晶体学关系和晶体数据库中的单胞资料可以计算出相应的粉末衍射图。,计算机在X射线物相分析中的应用,目前计算的衍射图和PDF卡合起来形成了超过200,000的衍射图数据库。这个数据库只给出高d值,它特别适用于分析电子衍射图,因此称它为电子衍射数据库(EDD)。把物相所含元素也列入EDD的相应条目中,就是元素和面间距索引(EISI)。在进行物相分析时,这个索引可提供相当宽的检索范围。物相定量分析工作也有应用计算机分析程序进行的工作,但是这方面的工作还很少。,点阵常数的精确测定,任何一种晶体材料的点阵常数都与它所处的状态有关。

    注意事项

    本文(晶体X射线衍射分析.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开