欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    数学课程含绪论.ppt

    • 资源ID:6364903       资源大小:1.62MB        全文页数:110页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学课程含绪论.ppt

    数学教学论 课件 宿迁学院 周永安2011年12月19日 江苏宿迁,数学是什么?,“数学是研究数量关系和空间结构的一门科学”数学是认识自然和改造自然的工具数学是打开科学的大门的钥匙数学的发展与应用的普及是社会进步的基础,是信息化社会的典型特征之一,数学教学论的学科目标,理解中学(初中为主)新课程标准的理念与目标规划了解中学数学学科的教学任务掌握几种常用的课堂数学教学法及其原理,并能够较熟练地应用于自己的教学组织中去能够自主撰写出具有较高理论水平的教案和说课稿能够具备一定水平的说课、上课、演课理论修养和操作技能 等,绪论 作为课程的数学教学论,“教学论”又译作教授学(didaktik,teaching theory)拉丁语的意思是“教授术”。,组成数学教学论的结构内容,关于教学论的研究对象,人们普遍地认为它是揭示教学的一般规律,研究教和学的一般原理。数学教学论是研究数学教学过程中教和学的联系、相互作用及其统一的科学。,数学教学论研究的数学教学是指数学活动的教学,它是教师的数学教学活动与学生的数学学习活动两个方面的统一过程。,数学教学论的一些主要研究课题,1)现代数学价值观与数学教学观;2)数学教学目的、性质与任务;3)数学教学过程与数学教学论的基本规律;4)数学教学内容与数学课程体系;5)数学教学思想与方法;6)数学教学活动与数学教学组织形式;7)数学能力和数学素质;8)数学思维品质与数学思维方法;,9)数学教学过程的优化;10)数学学习方式与学法的指导;11)数学教学评价与数学学习评价;12)信息技术与数学教学的现代化;13)数学问题解决;14)数学探究与研究性学习;15)教师专业化与中学数学教师的职业素质。,数学教学论的产生与发展,1.孔子(公元前551前479年):启发式的教学方法以及因材施教的教学实践。2.学记:教学相长。3.朱熹(11301200):六条“读书法”,即循序渐进、熟读深思、虚心涵咏、切己体察、着紧用力、居敬持志。,4.唐代的教育论著师说5.古希腊的著名教育家苏格拉底(Sokrates,公元前469前400年):归纳法教学和定义法教学(即“产婆术”)6.捷克教育家夸美纽斯(,15921670):大教学论 7.我国最早的数学教育理论学科,叫做“数学教授法”,陶行知先生,提出改“教授法”为“教学法”的主张,8.1979年,北京师大等全国13所高等师范院校合作编写的中学数学教材教法(总论和分论)9.1990年,曹才翰教授编著的中学数学教学概论问世,标志着我国数学教育理论学科已由数学教学法演变为数学教学论,由经验实用型转为理论应用型。10.1992年,数学教育学报创刊 11.2003年4月,高等教育出版社出版了由张奠宙、李士錡、李俊编著的数学教育学导论,数学教学论的理论基础,1.以辩证唯物主义认识论为基础2.以中学生心理学、生理学为基础3.以系统科学和传播学等现代化的科学理论为基础,第一讲 数学课程,第一节 数学课程的设计第二节 数学课程改革历史回顾第三节 义务教育阶段数学课程标准剖析第四节 高中数学课程标准简介,第一节 数学课程的设计一、选择教学内容的依据,1、社会发展的需求适应现代化社会生活、生产的需要适应科学技术迅猛发展的需要适应为全体学生进行数学教育的需要,2、数学新进展对数学课程的影响数学的发展引发的数学观的变化数学观:对数学本质的认识与态度。数学是绝对正确的知识汇集包含有实验、猜想、证明、运算等多种活动数学教学内容的现代化增加适应学生水平的近现代数学知识突出数学思想方法3、学生的认知规律与接受水平适应学生的认知水平;促使学生得到发展。,二、课程结构体系的编排,1、课程体系编排的基本原则1)符合数学学科的基本特性系统性突出学科的知识结构2)符合学生的认知发展规律可接受性:由浅入深,从直观到抽象直观性:从生活实例、直观模型引入趣味性:从让学生感兴趣的材料入手阶段性:与学生的思维发展阶段相适应,2、课程体系的具体呈现形式,1)直线式与螺旋式 直线式:一个知识点的学习一次完成,以后不再作为新 知识出现.螺旋式:一个知识点学完之后,还有可能作为新知识出现,只是其内涵有所拓广.2)结论式与过程式结论式:教材反映的是结论性知识.过程式:教材给出结论得出的思考、探究、分析过程.3)综合式与分科式综合式:各科内容混合编排分科式:各科内容单独编排,第二节 数学课程改革历史回顾,2.1 国外数学课程改革回顾一、数学教育近代化运动 时间是19世纪末20世纪初,主要是英国数学家贝利和德国数学家克莱茵等人的工作.二、数学教育现代化运动 20世纪50年代起源于美国,60年代很快风靡整个世界.到了70年代,人们开始重新评价这场运动.,2.2 我国数学课程改革的历史回顾,1986年全国人大通过了九年制义务教育法提出基础教育要从应试教育转变为素质教育强调数学教学不仅教给学生数学知识,还要揭示思维过程,提出发展数学思维能力是能力培养的核心;强调培养学生解决实际问题的能力2001年颁布,2005年全国所有小学,初中实施新课程;2003年4月,颁布,2004年宁夏,山东,广东和海南四省进行改革实验,2005年江苏省也开始高中教材的实验.2008年全国范围实施新课程.进入新世纪之后,教育部为了从根本上体现素质教育的思想,开始了新一轮的课程改革,提出了“为了中华民族的复兴,为了每一位学生的发展”的口号!,2.3 我国数学教学的现状及存在问题 1、我国数学教与学的特点,(1)注重双基学习,基础知识扎实,基本技能娴熟;(2)精讲多练成为课堂教学的主要方式;(3)擅长数学应试和竞技,在世界评估或竞赛中取得优异成绩;(4)具有规范的课堂管理和统一的学习要求;(5)具有较强的意志力和勤奋、刻苦的学习精神。,2、存在的问题,(1)学习目标上的问题“双基”成为主要目标;能力的要求不全面;缺乏对学生情感体验的关注与重视;(2)学习内容上的问题过分追求逻辑严谨与形式化;学习内容繁难,偏旧;(3)学习方式上的问题学习方式仍处于笔加纸的印刷时代;学生自我探索的空间较小;(4)考核与评价的问题评价的目的是筛选而不是激励;注重短期效益,使学生过早地消耗“成长成本”。,3、学生的身心发展与数学学习,学生的身心发展的三大基本观点:面向全体学生;关注每一个孩子的全面发展;促使学生主动发展。发展的内容体现为课程设置的三个目标:知识与技能;过程与方法;情感、态度与价值观,第三节 义务教育阶段数学课程标准剖析,一、基本理念二、总体目标三、具体目标分析四、新课程标准的特点分析,一、数学课程标准基本理念,1、突出基础性、普及性和发展性2、数学教育应面向全体学生,做到人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。(大众数学的内涵),3、充分认识数学的作用,处理数据、进行计算、推理和证明的工具;描述自然现象和社会现象的模型;为其他科学提供了语言、思想和方法一切重大技术发展的基础;提高人的推理能力、抽象能力、想象力、创造力。数学是人类的一种文化,其内容、思想、方法和语言是现代文明的重要组成部分。,4、改变学生的数学学习方式,数学学习应该是现实的、有意义的、富有挑战性的;学生要主动地进行观察、实验、猜测、验证、推理、交流等数学活动;学习不应单纯地依赖模仿与记忆,应培养学生掌握动手操作、自主探索、合作交流的学习方式;,5、关于教学过程中教师的角色,教师应激发学生的学习兴趣教师应向学生提供自主探索、合作交流的进行数学活动的机会学生是学习的主人,教师是数学学习的 组织者、引导者、合作者,6、关于教学评价,评价的目的:全面了解学生的数学学习情况;激励学生的学习;改进教师的教学;评价的内容:关注学生学习的结果,更要关注他们的学习过程;关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度。评价的方法:多元化通过评价帮助学生认识自我、建立自信心。,7、现代信息技术的运用,数学课程的设计与实施要重视运用现代信息技术充分考虑计算器、计算机对数学学习内容和方式的影响运用现代信息技术改变学生的学习方式。比如,数学实验等。,二、数学课程标准的总体目标,1、关于学段将九年的学习时间分为三个学段:第一学段(1-3年级),第二学段(4-6年级),第三学段(7-9年级)。2、课程总体目标(1)知识与技能(2)数学思考(3)解决问题(4)情感与态度,(1)第三学段 知识与技能,数与代数内容:数、式、方程、函数;特点:删减繁、难的内容,降低变形与运算的技能要求,增加对数学的探索、理解的要求;增加联系的要求(3联系)。空间与图形内容:图形的认识、图形与变换、图形与坐标、图形与证明特点:打破演绎证明一统几何天下的格局,综合运用下述等四类方法研究图形的性质。直观实验的方法坐标的方法变换的方法演绎证明的方法,(1)第三学段 知识与技能,概率与统计内容:概率,统计特点:属于新增加的内容,提倡联系生活实际理解随机现象与数据统计,强调相关内容的广泛应用性。实践与综合运用内容:课题学习特点:强调数学知识的运用,为进行研究性学习、改变学习方式提供一个平台。,知识与技能的教学要求:,将获取知识和技能的过程作为教学的重要目标注重对基础知识的理解与应用,案例:太阳光线下的影子与正切,活动1:图1是一个梯子,请画出梯子的每个梯阶在阳光下的影子(太阳光是平行的).,活动2(1)如果梯子很陡会出现什么问题;如果梯子太平会出现什么问题?(2)右面是梯子的侧视图,比较图中哪个梯子更陡?你是怎么判断的?用了哪些方法?,点评:(1)使学生直观体验光线对梯子的影响;(2)讨论如何刻画梯子的倾斜度,是一个挑战。学生可以用多种方法来刻画。最后通过列表、画图、讨论等活动初步了解倾斜角与比h:d的关系,抽象出正切的概念。,(2)第三学段数学思考的要求,经历运用数学知识描述现实世界的过程,建立初步的数感与符号感,发展抽象思维;丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维;经历运用数据描述信息、作出推断的过程,发展统计观念;经历观察、实验、猜想、证明等数学活动,发展合情推理能力与初步的演绎推理能力。,(3)第三学段解决问题的要求,初步学会从数学角度提出问题、理解问题,能综合运用知识解决问题,发展应用意识;形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神;学会与人合作,能与他人交流思维的过程与结果;初步形成评价与反思意识.,(4)第三学段情感与态度的要求,积极参与学习活动,有好奇心与求知识欲在学习中获得成功的体验,建立自信心;初步认识数学与人类生活的密切联系,体验数学学习的探索与创新;形成实事求是的态度以及进行质疑和独立思考的习惯,三、具体目标数与代数(第三学段),算术数(小学内容),代数初步,整式的加减,整式的乘除,幂的运算法则,因式分解,分式,互逆,有理数,数的开方,二次根式,实数,直角坐标系,函数,一元一次方程(不等式),二元一次方程组,分式方程,一元二次方程(分式、根式方程),四个基本函数,1、“数与代数”的知识内容,2、“数与代数”的教学目标,(1)初步掌握数、式、方程、函数等基础知识;(2)探索数、形及实际问题中蕴涵的关系和规律;(3)掌握有效地表示、处理和交流数量关系以及变化规律的工具;(3)体会数学与现实生活的紧密联系,提高运用代数知识与方法解决问题的能力.,案例1 在一个长4米、宽3米的矩形空地上建一个花坛,要求花坛的面积是空地面积的一半,请展示你的设计。,点评:这是在日本召开的国际数学教育心理学会议期间的一堂公开课,课题是一元二次方程的应用。每个学生可以展开想象,确定自己的设计图案,并尽量使之定量化,答案不唯一。,案例2 测量在安静状态下自己每分钟脉搏跳动的次数,剧烈运动3分钟,活动结束后,再测量自己每分钟脉搏跳动的次数。以后每隔一分钟测量一次,第4分钟后,写成下表:,根据表中数据回答下列问题:,(1)上述变化过程中,哪些量变化?什么呈依赖什么量变化?,(2)运动结束后,脉搏变化的总体趋势是什么?,(3)估计运动结束后大约经过多少分种,脉搏又恢复正常?,四个容量相等的容器形状如下:,以同一流量的水管分别注水到这四个容器,所需时间都相同,下列图象显示注水时,容器水位()与时间()的关系。请把适当的图象序号与相应容器形状的字母代号用线段连接。,三、具体目标空间与图形,1、“图形的认识”的学习目标,(1)基本图形(点、线、面、角、平行线、相交线、三角形、四边形、圆)的学习结合实例、在实际背景中理解图形的概念和性质经历探索(观察、操作、思考、想象、交流等活动)图形性质的过程。,(2)“视图与投影”的学习,会画直棱柱、圆柱、圆锥、球的三视图,根据三视图判断原型了解直棱柱、圆锥的侧面展开图,了解基本几何体与三视图、侧面展开图之间的关系,以及在现实中的运用。了解与欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)了解视点、视角、盲点的涵义,通过实例了解中心投影与平行投影.,案例1 某校有一个正方形的花坛,现要将它分成形状和面积都相同的四块,种上不同颜色的花卉,请你帮助设计三种不同的方案,分别画在下面三个正方形图形上(用尺规作图或徒手作图均可,但要尽可能准确些、美观些)。(图略),本题是一道开放性的作图题,解决问题的方案因学生的生活经验、思维能力与知识水平的差异而各不相同。本题主要考查对于正方形性质的理解与掌握的情况,以及应用这些知识解决问题的能力。这类题给学生创造性思维的展示与发挥提供了机会和可能。,案例2 在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,也不互相重叠(在几何里叫做平面镶嵌)。这显然与正多边形的内角大小有关。当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角()时,就拼成了一个平面图形。,(1)请根据下列图形,填写表中空格:,(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?,(3)从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种正多边形镶嵌成的一个平面图形(草图);并探索两种正多边形共能镶嵌成几种不同的平面图形,说明你的理由。,2、“图形与变换”的学习目标,(1)“几何变换”学习要求通过具体实例来研究轴对称、平移、旋转的基本性质了解、识别一些基本对称图形作出简单平面图形经过变换后的图形欣赏变换在现实生活中的应用探索图形之间的变换关系,运用变换的组合进行图案设计,(2)“图形的相似”学习要求,了解比例的性质,通过实例了解黄金分割通过实例认识图形的相似,探索相似图形的性质了解两个三角形相似的概念,探索两个三角形相似的条件了解图形的位似,会放大或缩小一个图形利用图形的相似解决一些实际问题认识锐角三角函数,会使用计算器求三角函数值,会用三角函数解决一些实际问题,3、“图形与坐标”的学习目标,(1)认识并能画出直角坐标系,由坐标确定点的位置,由点的位置写出坐标(2)能在方格纸上建立适当的坐标系,以描述物体的位置(3)在同一直角坐标系中,感受图形变换后的坐标的变化。(4)灵活运用不同的方式确定物体的位置,4、“图形与证明”的学习目标,(1)理解证明的含义,强调理解证明的必要性,(2)以4组基本命题为依据证明较简单的命题(3)介绍欧几里德几何,感受几何的演绎体系对数学发展与人类文明的价值,“图形与证明”的教学要求,(1)降低演绎推理的难度与数量;(2)通过适量的、难度相当的命题的证明,掌握证明的基本方法,协调地发展推理能力;(3)要求理解证明的含义,会清晰且有条理地表达、交流、讨论、质疑等;(4)提高合情推理的要求,即会探索、会猜想等.,三、具体目标统计与概率,由于概率统计的广泛应用性,义务教育数学课程标准增加了统计和概率的内容.,1、初中统计的教学目标,从事数据的收集、整理、描述和分析,养成用数据说理的习惯能用计算器处理较为复杂的数据感受抽样的必要性,区分总体、个体和样本,用样本估计总体的平均数与方差掌握扇形统计图、加权平均数、极差、方差、频数分布图经历提问题查资料调查研究分析数据判断决策交流看法的学习过程,2、初中概率的教学目标,了解概率的意义,丰富对概率的认识了解频率,会画树状图能用公式计算一些简单事件的概率会用一事件在反复试验中发生的频率来近似描述该事件发生的概率,3、概率与统计的教学建议,重视学生对随机现象的体验和理解,教学重点不在单纯的统计量计算、不要求对有关术语的严格表述。多借助直观、实验的手段面对可能性大小问题,组织学生猜测结果进行实验分析实验结果,培养良好的概率直觉,实例:用频率估计概率的方法,拼图片问题:三张大小一样且印有不同图案的纸片均被剪成两小张,充分混合以打乱次序,然后闭上眼睛随便抽出两张拼在一起,问能够拼成一张原图的可能性。,实验的方法,理论的方法,全班讨论-分头实验,记录数据-小组汇总数据-全班汇总数据-全班讨论,全班实验中一共成功的次数/全班一共实验的次数1/5,实例,问题:抛掷两枚硬币,要求“得到两个正面”,它在每次实验中发生的机会是多少?教学过程:实验计算验证,某班四十位同学每人10次实验中成功掷出“两个正面”的次数,该班同学共计400次实验中成功掷出“两个正面”的频率,三、具体目标实践与综合运用,经历“问题情境建立模型解释与应用”的基本过程;体验数学知识之间的内在联系,形成对数学的整体性认识;获得一些研究问题的方法与经验,加深理解相关的数学知识;获得成功的体验和克服困难的经历,增进应用数学的自信心.,实例1 用一个正方形的纸制作一个无盖的长方体,怎样制作使得体积较大?,说明 这是一个综合性问题,学生可从以下几方面进行思考:,(1)无盖长方体展开后是什么图形?,(2)用一张正方形的纸怎样才能制作一个无盖长方体?基本操作步骤 是什么?,(3)制成的无盖长方体的体积怎样计算?,(4)什么情况下无盖长方体的体积较大?,(5)如果是一个有盖长方体,情况又如何?,实例2 数学与物理的联系,原理:两点间距离最短;光线传播时走最短路线。,实际问题:在铁路同侧有两个工厂A、B,要在铁路边上建一货场C,使工厂到C的距离之和最小,C点建在何处?,光线问题:设光线从A点出发,经镜面反射后到达B点,试画出光线的传播图。,拓广问题:(1)光线从点A出发,反射光线与已知直线平行或垂直,试分别画出其光线传播图;(2)如果设太阳光平行地射向地球,试设计一个太阳灶(材料:平面镜、玻璃刀,钢丝架,玻璃胶等),实例3 几何与代数的联系,准备多个长方形与正方形卡片,1、教师任意写出一个可分解成两个一次因式的关于a、b的二次式,如a2+2ab+b2,2a2+5ab+2b2,2、要求学生根据给出的二次式,选取恰当的卡片,尝试拼成一个矩形;,3、讨论该矩形的代数意义;,4、学生选取恰当的卡片,拼接成不同尺寸的矩形,说出该矩形相应的代数表达式。,实例4 最大公约数的问题,1、依次列出1-20之间的数与4的最大公约数,并列表表示;,2、将1-20之间的数标在横轴上,在纵轴上标出每一个数与4的最大公约数,绘制关系图;,3、根据关系图,观察其中的规律,并用语言表示;试着讨论1-20的数与除4以外的数(如2、3、5、6)的公约数的情况,是否有类似的规律?,四、新课程(义务教育)的特点分析,以学生的发展为本这是基本出发点,具体地有1、删减了较难的内容(如根与系数的关系)2、降低内容难度(如式的运算,因式分解)3、淡化解题技巧(如证明、二次函数),增加对数学的理解4、增强数学与生活、与其它学科,以及数学内部的联系(从实际生活中引入问题),5、不仅关注学习结果,而且关注学习过程,不仅关注学到了什么,而且关注学生的感受与体验。6、强调学生学习的主体性,给予学生自主探索、合作交流的机会与条件7、加强各科内容、多种方法的内在联系。8、充分发挥信息技术(计算器、计算机)对数学教学的作用与影响,第四节 高中数学课程标准简介,4.1 我国现行高中数学课程剖析,集合与简易逻辑,映射,函数,初中函数,函数性质与反函数,指数函数,对数函数,三角函数,指数式运算,对数式运算,同角三角函数关系,诱导公式,两角和的三角函数,解斜三角形,图象与性质,不等式,数列,极限,微积分,一、高中代数内容分析,排列组合二项式定理数学归纳法(选修)初中二元一次方程组线性方程组行列式(选修)初中实数复数(选修)初中统计概率概率统计,二、立体几何内容分析,直线与平面研究点、线、面的位置关系,包括(1)性质与判定定性描述(2)平行与垂直重点讨论的位置关系(3)夹角与距离定量刻画直线与平面处理方式:线线关系线面关系面面关系其中穿插夹角、距离的概念和计算,多面体与旋转体柱、锥、台、球的概念、性质、画法多面体与旋转体的处理方式(1)传统方式:定义性质侧面积画法性质的应用(高二下A)(2)用空间向量刻画位置关系、求夹角与距离,用微积分来计算面积与体积(高二下B)多面体与旋转体、直线与平面两者的处理:直线与平面多面体与旋转体综合运用;现实生活中模型多面体与旋转体直线与平面,平面向量,向量的加法、数乘运算,平面向量基本定理,平面向量的坐标表示,点与实数对建立一一对应,平面向量的坐标运算,两个向量和与差的坐标,实数与向量积的坐标,线段的定比分点,向量的数量积运算,向量的数量积的坐标表示,平移及平移公式,三、解析几何内容分析,直线的方程及方程的直线,倾斜角与斜率,直线的方程,两条直线的位置关系,平行与垂直,交点与夹角,点到直线的距离,点斜式,两点式,参数式,一般式,线性规划问题,平面区域的表示,直线方程的应用,曲线与方程,求曲线的方程,圆的标准方程,圆的一般方程,圆的参数方程,圆锥曲线的标准方程及几何性质,利用平移化简方程,4.2 高中数学课程标准简介,一、基本理念,1、高中课程应具有基础性为学生未来发展提供数学基础;2、高中课程具有选择性提供多样课程,适应个性选择,使不同的学生在数学上得到不同的发展。3、提倡积极主动、勇于探索的学习方式具体表现自主探索、动手实践、合作交流、阅读自学.,4、注重提高学生的数学思维能力直观感知,观察发现,归纳类比,空间想象,抽象概括,数据处理,演绎证明,反思与建构等5、发展学生的应用意识6、正确认识双基的内涵、正确进行技能的训练7、适度形式化,强调对数学本质的理解,8、体现数学的文化价值,包括了解数学的作用;对数学美的欣赏;形成正确的数学观。9、信息技术与数学课程的整合10、建立合理、科学的评价体系。,二、高中数学课程框架,必修由5个模块组成,选修由4个系列组成:系列1、2由若干模块组成;系列3、4由若干专题组成。每个模块2个学分;每个专题1个学分。,三、必修课程,数学1:集合,基本初等函数(包括函数概念,指数函数、对数函数、幂函数);数学2:立体几何初步,平面解析几何初步;数学3:算法初步、统计、概率;数学4:基本初等函数(三角函数)、平面上的向量,三角恒等变换;数学5:解三角形,数列、不等式。,1、数学1的理解与把握,(1)数学1是基础中的基础,要求每个高中生都掌握;(2)从实际背景与抽象定义两方面帮助学生真正理 解函数概念的本质。例举人口统计表、一天的气温变化图、自由落体运动三个实例,要求学生用集合语言阐述这三个实例的共同特点抽象出函数的定义。(3)通过实例引入指数函数与对数函数的概念,运用图象研究函数性质,研究这两个函数在生活中的应用.,(4)增加了幂函数,但要求不高,结合具体函数,或者借助于计算器、计算机了解当指数变化时,函数图象的变化情况;(5)降低反函数的难度,通过比较指数函数与对数函数,知道什么是反函数,不要求抽象地给出反函数的定义,不要求会求反函数。(6)方程的处理与函数紧密地结合起来,了解方程根与函数零点的关系;结合函数图象,借助计算机(器)学会求方程近似解的方法;,(7)强调函数模型的广泛应用,例举基本函数在现实生活中的应用,建构现实生活中一些问题(比如,九大行星离太阳的距离和它们运行的周期的关系)的函数模型.,2、立体几何初步(数学2)的理解与把握,教学重点是形成空间想象能力,教学原则是从整体到部分,从具体到抽象(1)认识空间几何体认识柱、锥、台、球的结构特征,能运用这些特征描述现实生活中的简单物体的结构;能画出简单空间图形的三视图,由三视图认识空间模型,会画直观图。了解空间几何体在实际生活中的应用了解球、柱、锥、台的表面积与体积公式;,(2)点、线、面之间的位置关系借助模型,抽象出空间线、面位置关系的定义,了解一些公理作为推理的依据通过直观感知、操作确认,认识与理解空间线、面平行与垂直的判定定理(不要求证明),会证明线面平行与垂直的性质定理。会解决一些简单的推理论证与应用问题。,3、解析几何初步(数学2)的 理解与把握,(1)直线与方程结合具体图形,探索确定直线的几何要素;理解斜率的概念,经历用代数方法刻画直线斜率的过程,掌握斜率公式;会用斜率判别两直线平行或垂直;根据几何要素,探索、掌握直线方程的几种形式,体会斜截式与一次函数的关系探索、掌握两点间的距离公式、点到直线的距离公式、会求两平行线间的距离会求两相交直线的交点,(2)圆与方程通过确定圆的几何要素,探索并掌握圆的标准方程与一般方程;会判断直线与圆的位置关系;能用直线与圆解决一些简单的问题;空间坐标系了解空间坐标系,会用空间坐标系刻画点的位置;通过表示长方体的顶点的坐标,探索并得出空间两点间的距离公式体会用代数方法处理几何问题的思想:将几何问题代数化,用代数语言描述几何要素及其关系,处理代数问题;分析代数问题的几何含义,最终解决几何问题。,4、算法(数学3)的理解与把握,(1)算法(algorithm)的内涵进行某一工作的方法和步骤,程序化是其基本思想。比如,解一元一次方程的算法:去分母,去括号,移项,合并同类项,两边同除以未知数的系数。,(2)算法的构成要素各种运算,如算术运算,逻辑运算,关系运算,函数运算等;控制结构,由三种基本结构组成:顺序结构:即某一运算的步骤,遵循此步骤由条件必得到正确的结果;选择结构:根据条件进行判断,选择相应的步骤。循环结构:根据条件是否满足,以决定是否继续执行循环体中的操作。,(3)学习算法的意义我国古代数学以算法为特色;计算机的发展,使得算法的知识、方法、思想逐渐融入人们日常生活;有助于全面理解数学运算能力传统的运算:辨别题型、回忆法则、形成技能技巧算法学习的要求:理解相应的算理;选择、构造合理的算法,提高运算能力。,(4)算法的学习内容通过解决具体问题(如二元一次方程的求解),体会算法的程序性思想,了解算法的含义通过具体问题的解决,模仿、操作、探索设计程序框图的过程,理解程序框图的三种基本结构通过具体问题的程序框图转化为程序语句的过程,理解几种算法语句。输入语句、输出语句、赋值语句、条件语句、循环语句,(5)算法教学建议:注重算法思想的理解与渗透通过实例进行教学。将传统的法则、步骤与计算机技术结合起来,形式化地表示算法。如,孙子问题的算法设计,求两数最大公因数的算法设计先具体再抽象:算理、步骤、抽象为一般的算法、画出流程图,得到一般意义上的逻辑框图、由框图转化为程序语句。,5、三角函数(数学4)的 理解与把握,(1)学习内容任意角、弧度制,任意角的三角函数定义同角三角函数的关系(两个公式)三角函数的诱导公式能画出正弦、余弦、正切函数的图象,了解三角函数的周期性;理解正、余弦函数在一个周期上的性质,借助计算机(器)探索y=Asin(x+)的图象,可以由正弦曲线的哪些变换得到?观察A、的变化对图象的影响。,6、平面向量(数学4)的 理解与把握,从几何、物理背景引入平面向量的基本概念;掌握向量的线性运算掌握平面基本定理及坐标表示;掌握平面向量的数量积运算用向量解决几何、力学等问题,7、三角变换(数学4)的 理解与把握,用向量的方法推导两角差的余弦公式;推导两角和与差的正弦、余弦、正切公式;二倍角公式;介绍和差化积公式,尝试推导积化和差公式、万能公式。利用上述公式进行简单的变换,8、解三角形(数学5),探索三角形边长与角度的关系;掌握正弦定理、余弦定理解决与测量有关系的实际问题,9、数列(数学5),数列的概念及表示;理解等差数列、等比数列探索并掌握等差数列、等比数列的通项公式、前n项和的公式;能运用上述知识解决相应的问题;体会等差数列、等比数列与一次函数、指数函数的关系。,10、不等式(数学5),感受现实生活中存在的不等关系从实际情境中抽象出一元二次不等式的模型;通过图象了解一元二次不等式与相应函数、方程的关系;会解一元二次不等式,尝试给出求解的程序框图;了解二元一次不等式给的几何意义;在实际情境中抽象出二元线性规划问题,并加以解决;探索并了解基本不等式的证明过程;会用基本不等式求简单的最值问题。,2、选修课程,系列1:由两个模块组成常用逻辑用语,圆锥曲线与方程,导数及其应用;统计案例,推理与证明,数系的扩充与复数的引入,框图;系列2:由三个模块组成常用逻辑用语,圆锥曲线,空间中的向量与立体几何;导数及应用,推理与证明,数系的扩充与复数的引入;计数原理,统计案例,概率。,系列3:由6个专题组成数学史选讲;信息安全与密码球面上的几何对称与群欧拉公式与闭曲面分类;三等分角与数域扩充,系列4:由10个专题组成几何证明选讲;矩阵与变换数列与差分;坐标系与参数方程;不等式选讲;初等数论初步;优选法与试验设计初步统筹法与图论初步风险与决策开关电路与布尔代数,3、选课建议,(1)完成10个学分的必修课程,达到高中毕业的基本要求;(2)在人文、社会科学方向发展的学生有两种选择:系列1中获得4学分,系列3获得2学分,计16学分除了获得上述16学分外,在系列4中获得4学分,计20学分,(3)在理工、经济类等方面发展的学生有两种选择:系列2获6学分,分别在系列3、4中各获2学分,总计20学分除了上述20学分外,在系列4中再获得4学分,总计24学分。,4、高中数学新课程的特点,增强课程的选择性、时代性采用学分制管理方式紧密联系现实生活从生活中引入数学知识,将数学知识应用于生活实践信息技术与课程的整合算法成为必须掌握的内容之一计算器成为探索数学结论强有力的工具,降低数学知识的记忆要求(如三角公式)降低某些技能技巧的要求(如立体几何)增强对数学的理解要求、联系的要求、探索的要求。强调数学的文化价值,谢谢,

    注意事项

    本文(数学课程含绪论.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开