欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    微积分学PPt标准课件17-第17讲高阶导数.ppt

    • 资源ID:6363439       资源大小:503.50KB        全文页数:42页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    微积分学PPt标准课件17-第17讲高阶导数.ppt

    一元微积分学,大 学 数 学(一),第十七讲 高阶导数,脚本编写、教案制作:刘楚中 彭亚新 邓爱珍 刘开宇 孟益民,第四章 一元函数的导数与微分,本章学习要求:理解导数和微分的概念。熟悉导数的几何意义以及函数的可 导、可微、连续之间的关系。熟悉一阶微分形式不变性。熟悉导数和微分的运算法则,能熟练运用求导的基本公式、复合函数求导法、隐函数求导法、反函数求导法、参数方程 求导法、取对数求导法等方法求出函数的一、二阶导数和微 分。了解 n 阶导数的概念,会求常见函数的 n 阶导数。熟悉罗尔中值定理、拉格朗日中值定理、柯西中值定理和泰 勒中值定理,并能较好运用上述定理解决有关问题(函数方 程求解、不等式的证明等)。掌握罗必塔法则并能熟练运用它计算有关的不定式极限。,第三节 高阶导数,第四章 一元函数的导数与微分,一.高阶导数的概念,高阶导数的运算法则,隐函数及参数方程 确定的函数的高阶导数,一.高阶导数的概念,推而广之:,按照一阶导数的极限形式,有,和,一个函数的导函数不一定再可导,也不一定连续.如果函数 f(x)在区间 I 上有直到 n 阶的导数 f(n)(x),且 f(n)(x)仍是连续的(此时低于 n 阶的导数均连续),则称 f(x)在区间 I 上 n 阶连续可导,记为,如果 f(x)在区间 I 上的任意阶的高阶导数均存在且连续,则称函数 f(x)是无穷次连续可导的,记为,解,注意,当 k=n 时,综上所述:,解,多项式,的高阶导数.,解,对多项式而言,每求一次导数,多项式的次数降低一次;n 次多项式的 n 阶导数为一常数;大于多项式次数的任何阶数的导数均为 0.,求 y=ex 的各阶导数.,解,y=ex 的任何阶导数仍为 ex,求 y=ax 的各阶导数.,解,运用数学归纳法可得,求 y=lnx 的各阶导数.,解,设,类似地,有,则,故由数学归纳法得,解,注意这里的方法,即,类似地,有,解,看出结论没有?,运用数学归纳法可以证得,类似地,可求得,解,解,二阶导数经常遇到,一定要掌握.,解,由复合函数及反函数的求导法则,得,解,高阶导数的运算法则,设 f(x),g(x)有直到 n 阶的导数,则,(1),(2)莱布尼兹公式,两个基本公式,由于,故,解,解,由莱布尼兹公式,证,看出一点什么没有?,你打算怎么处理此式?,对上式关于 x 求导 n 次:,故,即,隐函数及参数方程 确定的函数的高阶导数,原则是:按照高阶导数的定义,运用隐函数及参数方程所确定的函数的求导法则逐阶进行求导.,对方程两边关于 x 求导:,解,想想如何求二阶导数?,对方程两边关于 x 求导,得:,对该方程两边关于 x 求导:,解,从而,其中,方程两边对 x 求导,解,故,解,参数方程求导 并不难啊!,解,解,解,

    注意事项

    本文(微积分学PPt标准课件17-第17讲高阶导数.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开