高等数学课件D1123全微分方程.ppt
2023/10/20,高等数学课件,全微分方程,机动 目录 上页 下页 返回 结束,第二节,一、全微分方程,二、积分因子法,第十一章,2023/10/20,高等数学课件,判别:,P,Q 在某单连通域D内有连续一阶偏导数,式为全微分方程,则,求解步骤:,方法1 凑微分法;,方法2 利用积分与路径无关的条件.,1.求原函数 u(x,y),2.由 du=0 知通解为u(x,y)=C.,一、全微分方程,则称,为全微分方程(又叫做恰当方程).,机动 目录 上页 下页 返回 结束,2023/10/20,高等数学课件,例1.求解,解:因为,故这是全微分方程.,则有,因此方程的通解为,机动 目录 上页 下页 返回 结束,2023/10/20,高等数学课件,例2.求解,解:,这是一个全微分方程.,用凑微分法求通解.,将方程改写为,即,故原方程的通解为,或,机动 目录 上页 下页 返回 结束,2023/10/20,高等数学课件,二、积分因子法,思考:如何解方程,这不是一个全微分方程,就化成例2 的方程.,使,为全微分方程,在简单情况下,可凭观察和经验根据微分倒推式得到,为原方程的积分因子.,但若在方程两边同乘,若存在连续可微函数,积分因子.,例2 目录 上页 下页 返回 结束,2023/10/20,高等数学课件,常用微分倒推公式:,积分因子不一定唯一.,例如,对,可取,机动 目录 上页 下页 返回 结束,2023/10/20,高等数学课件,例3.求解,解:分项组合得,即,选择积分因子,同乘方程两边,得,即,因此通解为,即,因 x=0 也是方程的解,故 C 为任意常数.,机动 目录 上页 下页 返回 结束,2023/10/20,高等数学课件,练习1 解方程,解 应用积分因子法.,原方程变形为,取积分因子,故通解为,此外,y=0 也是方程的解.,机动 目录 上页 下页 返回 结束,2023/10/20,高等数学课件,机动 目录 上页 下页 返回 结束,练习2,解,利用积分因子法:,原方程重新组合为,故通解为,