欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    高等数学微积分第二章第9节.ppt

    • 资源ID:6358263       资源大小:953.50KB        全文页数:49页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高等数学微积分第二章第9节.ppt

    第九节 函数单调性与凸性的判别法,一、单调性的判别法,二、凸性及其判别法,一、函数单调性的判别法 1、单调性的判别法,定理(函数单调性的判定法),备注,证,例1,解,注意 函数的单调性是一个区间上的性质,要用导数在这一区间上的符号来判定,而不能用一点处的导数符号来判别一个区间上的单调性,2、单调区间求法,定义:若函数在其定义域的某个区间内是单调的,则该区间称为函数的单调区间,这时也称函数是该区间的单调函数.,导数等于零的点和不可导点,可能是单调区间的分界点,求函数的单调区间的方法:,例2,解,函数的单调增加区间为:,函数的单调减少区间为:,例2,解,函数的单调增加区间为:,函数的单调减少区间为:,说明:,1)单调区间的分界点除驻点外,也可以是导数 不存在的点.,例3,2)如果函数在某驻点两边导数同号,则不改变函数的单调性.,例4,例5,解,例如,注意:区间内个别点导数为零,不影响区间的单调性.,3、利用单调性可以证明不等式,例6,例7,例4,证,例7,证,例,证,例,证,4、利用单调性可以证明根的唯一性,例8,此种题型应先证明根的存在性,再证明唯一性.,5、小结,单调性的判别是拉格朗日中值定理的重要应用.,定理中的区间换成其它有限或无限区间,结论仍然成立.,应用:利用函数的单调性可以确定某些方程实根的个数和证明不等式.,二、函数的凸性及其判别法 1.函数凹凸的定义,问题:如何用数量方法来刻划曲线的弯曲方向?,图形上任意弧段位于所张弦的上方,图形上任意弧段位于所张弦的下方,定义:,2.函数凹凸性的判别法,判别法2,判别法1,例1,解,注意到,例2,解,说明:,若在某点二阶导数为 0,在其两侧二阶导数不变号,则函数的凹凸性不变.,3、曲线的拐点及其求法,1)定义,注意 拐点处若存在切线,则必在拐点处穿过曲线.,2)拐点的求法,证,求拐点的方法:,例3,解,凸,凹,凸,拐点,拐点,例4,解,不存在,凸,凹,注意:,结论:,若曲线 y=f(x)在点 x0 连续,或不存在,但 在点 x0 两侧异号,则点 是曲线,y=f(x)的一个拐点.,求拐点的步骤:,step1 求二阶导数等于零和不存在的点 x0.,step2 判断二阶导数在这些点的左右两侧是否异号.,step3 写出拐点.,4、利用函数的凸性证明不等式,证,5、小结,曲线的弯曲方向凸性;,改变弯曲方向的点拐点;,函数凹凸性的判定,曲线凹凸与拐点的判别,思考与练习,提示:利用,单调增加,及,B,提示:,及,证明:,令,得,从而三个拐点为,因为,所以三个拐点共线.,解,不能断定.,例,但,当 时,,当 时,,注意 可以任意大,故在 点的任何邻域内,都不单调递增,解,例如,求拐点方法2:,例,解,练 习 题,练习题答案,练 习 题,练习题答案,

    注意事项

    本文(高等数学微积分第二章第9节.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开