欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    算法合集之《浅析解对策问题的两种思路》.ppt

    • 资源ID:6329381       资源大小:320.50KB        全文页数:41页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    算法合集之《浅析解对策问题的两种思路》.ppt

    浅析解“对策问题”的两种思路,从取石子问题谈起,浅析解“对策问题”的两种思路,内容提要:,本文所要探讨的正是此类“对策问题”。,运筹学是一门十分年轻的学科,内容包括:规划论、图论、对策论、排队论等。,竞赛中最常出现的对策问题是:有两个局中人,在对方时刻采取最优策略的情况下,己方要么有必胜策略,要么必败。,由于对局的复杂性和取胜的多样性,文章将从一道经典的“对策问题”取石子谈起,着重阐述两种基本思想方法。,浅析解“对策问题”的两种思路,问 题 描 述 有N粒石子,甲乙两人轮流从中拿取,一次至少拿一粒,至多拿先前对方一次所取石子数目的两倍。甲先拿,开始甲可以拿任意数目的石子(但不得拿完)。最先没有石子可拿的一方为败方。请问,甲能否获胜?(1 N 100),解 析 在本题中,影响胜败的有两个关键因素:l 当前石子总数 N l 当前一次最多可拿的石子数 K 用这两个因素(N,K)来表示当前局面的“状态”。题目要求的是判断状态(N,N-1)是先手必胜还是必败。,浅析解“对策问题”的两种思路,用一个简单例子分析:假设有N=4粒石子,则一开始甲最多能取3粒,用(4,3)来表示初始状态。,状态转移的拓扑结构,浅析解“对策问题”的两种思路,1如果一个状态没有子状态,是结局,则根据题目条件判定胜负,浅析解“对策问题”的两种思路,1如果一个状态至少有一个子状态是先手败,则该状态是先手胜,浅析解“对策问题”的两种思路,胜,败,1如果一个状态的所有子状态都是先手胜,则该状态是先手败,浅析解“对策问题”的两种思路,“动态规划”或“记忆化搜索”空间复杂度 O(N2)时间复杂度 O(N3),浅析解“对策问题”的两种思路,思路一:一般性方法,“一般性方法”是从初始状态出发,自顶向下,考察所有状态,逐步构造出“状态转移的拓扑结构”,有通行的胜败规则和实现方法,因此应用十分广泛。例如IOI96的取数字,IOI2001Ioiwari都可以用“一般性方法”来解决。,浅析解“对策问题”的两种思路,思路一:一般性方法,状 态 列举影响结局胜负的所有因素,综合描述成“状态”。根据对局时状态之间的变化,自顶而下构造出“状态转移的拓扑结构”。,胜负规则 一个状态的胜负取决于其所有子状态的胜负。1如果一个状态没有子状态,是结局,则根据题目条件判定胜负 1如果一个状态至少有一个子状态是先手败,则该状态是先手胜 1如果一个状态的所有子状态都是先手胜,则该状态是先手败,浅析解“对策问题”的两种思路,思路一:一般性方法,扩展规则 在某些场合下,还可以记录一个状态先手胜(负)的最大(最小)利益,以数值形式描述,再根据题目中相应的条件,构成新的具有针对性的推算规则。例如IOI2001Score一题就是用扩展规则解决的。,实现方法 1预先处理(关键)列举状态;构造“状态转移的拓扑结构”;动态规划或记忆化搜索求状态先手胜负。1对局策略 依据已知的状态胜负,时刻把先手必败的状态留给对方。,浅析解“对策问题”的两种思路,思路一:一般性方法,“一般性方法”也有它的不足:,基 础“一般性方法”是以“状态转移的拓扑结构”为基础设计的。,空 间“一般性方法”要考察所有状态的先手胜负。如果状态数目过多,甚至是无穷多,那“一般性方法”就无能为力了。,时 间“一般性方法”还要通过胜负规则来研究状态之间的关系。如果状态过多,关系复杂,就可能导致算法效率下降。,浅析解“对策问题”的两种思路,思路一:一般性方法,由此可见,“一般性方法”并不能解决所有的“对策问题”。于是,各种各样的针对单独问题的特殊解法应运而生,不妨总的称之为“特殊性方法”。,为了弥补“一般性方法”的缺陷,“特殊性方法”势必是寻找一种“决策规律”,能依据当前状态,按照“决策规律”直接决定下一步的走法。,浅析解“对策问题”的两种思路,思路二:特殊性方法,先看一个简单的例子:在一个圆形桌面上,甲、乙轮流放5分硬币,不许重叠,甲先放,首先放不下硬币的一方为负。甲如何取胜呢?,事实上,甲只要先在圆桌中心放下一枚硬币,此后无论乙怎么放,甲总在其关于中心对称处放一枚,最终甲必然获胜。,浅析解“对策问题”的两种思路,思路二:特殊性方法,在这个例子中,甲找到了一种必胜的状态。这种状态是具有某种“平衡性”的,称之为“平衡状态”。每当乙破坏了“平衡”后,甲立即使其恢复“平衡”,直到结局。,先看一个简单的例子:在一个圆形桌面上,甲、乙轮流放5分硬币,不许重叠,甲先放,首先放不下硬币的一方为负。甲如何取胜呢?,浅析解“对策问题”的两种思路,思路二:特殊性方法,先看一个简单的例子:在一个圆形桌面上,甲、乙轮流放5分硬币,不许重叠,甲先放,首先放不下硬币的一方为负。甲如何取胜呢?,浅析解“对策问题”的两种思路,思路二:特殊性方法,“一般性方法”是从初始状态开始,自顶而下建立“状态转移的拓扑结构”。现在,不妨反其道而行之,从结局或小规模残局开始,自底向上分析。,甲必败:,甲必胜:,2,3,4,5,6,7,8,浅析解“对策问题”的两种思路,思路二:特殊性方法,Fibonacci 数列,“一般性方法”是从初始状态开始,自顶而下建立“状态转移的拓扑结构”。现在,不妨反其道而行之,从结局或小规模残局开始,自底向上分析。,浅析解“对策问题”的两种思路,思路二:特殊性方法,猜 想:设F为Fibonacci数列(F1=2,F2=3,FK=FK-1+FK-2)初始时有N粒石子,若NF则先手必败,否则先手必胜。,浅析解“对策问题”的两种思路,思路二:特殊性方法,性质1:若KN,则状态(N,K)先手必胜。,性质2:若状态(N,N-1)先手必败,则状态(N,K)K N 先手必败。,性质3:若状态(N,K)K N,则最后一次取走的石子数目不超过2N/3。,性质4:4Fi-1/3 Fi(F1=2,F2=3,FK=FK-1+FK-2)。,浅析解“对策问题”的两种思路,思路二:特殊性方法,结论1:状态(Fi,A)A Fi 先手必败。,浅析解“对策问题”的两种思路,思路二:特殊性方法,证 明:,(一)F1(=2),F2(=3)时,显然成立。,(二)若F1至Fi成立,则Fi+1成立。,设先手取K粒石子。,(1)若KFi-1 后手得状态(N-K,2K),2K2Fi-1Fi-1+Fi-2=Fi N-K 由性质1,后手获胜。,后手获胜,先手败,浅析解“对策问题”的两种思路,思路二:特殊性方法,证 明:,(2)若K Fi-1,根据假设(Fi-1,K)K Fi-1 必败,所以后手可以使先手面临(Fi,X)状态。,浅析解“对策问题”的两种思路,思路二:特殊性方法,证 明:,(2)若K Fi-1,由性质3:X2Fi-1/3 2=4Fi-1/3,由性质4:X4Fi-1/3 Fi 因此(Fi,X)是必败,后手获胜,先手败,浅析解“对策问题”的两种思路,思路二:特殊性方法,证 明:,(2)若K Fi-1,后手获胜,先手败,由(1)(2)得Fi+1时,结论成立。,由(一)(二)得结论1成立。,浅析解“对策问题”的两种思路,思路二:特殊性方法,浅析解“对策问题”的两种思路,思路二:特殊性方法,平衡状态:Fibonacci数,决策规律:反复缩小范围,找最大Fibonacci数,浅析解“对策问题”的两种思路,思路二:特殊性方法,浅析解“对策问题”的两种思路,思路二:特殊性方法,“特殊性方法”是从结局或残局出发,自底而上分析,无须构造“状态转移的拓扑结构”,无须考察所有可能的状态与策略,时间和空间复杂度相对于“一般性方法”都不高。例如POI99 多边形,IOI96的取数字也可以用“特殊性方法”来解决。,浅析解“对策问题”的两种思路,思路二:特殊性方法,状 态 列举影响结局胜负的所有因素,综合描述成“状态”,但并不需要构造出“状态转移的拓扑结构”。,浅析解“对策问题”的两种思路,思路二:特殊性方法,逆向分析 从简单的结局或残局开始,自底向上分析。考察特殊情况下(譬如小规模,对称,极大极小等特殊值),先手胜或先手败的一类状态,并尝试从以下几个方面寻找共性:,1 对称性,1 简捷性,1 奇异性,通过分析,将所得性质推广到一般情况,从而找出一类必胜或必败的“平衡状态”,同时也得到保持状态“平衡”的“决策规律”。,浅析解“对策问题”的两种思路,一般性方法 与 特殊性方法,1一次可取先前对方所取石子数的3倍,取石子问题的推广:,1一次可取先前对方所取石子数的4倍,1一次可取先前对方所取石子数的5倍,1一次可取先前对方所取石子数的K倍,1,浅析解“对策问题”的两种思路,一般性方法 与 特殊性方法,思路方向,一般性方法:自顶而下 考察所有状态胜负 特殊性方法:自底而上 研究一类平衡状态,浅析解“对策问题”的两种思路,一般性方法 与 特殊性方法,思路方向,一般性方法:有通行胜负规则 特殊性方法:无通行胜负规则,胜负规则,浅析解“对策问题”的两种思路,一般性方法 与 特殊性方法,思路方向,胜负规则,一般性方法:关键是动态规划或记忆化搜索的预处理。特殊性方法:着重于事先的思考,再将“决策规律”转化成程序。,实现方法,浅析解“对策问题”的两种思路,一般性方法 与 特殊性方法,思路方向,胜负规则,一般性方法:有通行规则可套用,应用面十分广泛;但是受“拓扑结构”限制,而且需考察所有状态,时空复杂度也有可能很高。特殊性方法:不受“拓扑结构”限制,无须考察所有状态,时空复杂度低,编程简单;但是无通行规则,思考难度大。,优点缺点,实现方法,浅析解“对策问题”的两种思路,一般性方法 与 特殊性方法,思路方向,胜负规则,在“对策问题”中,一个状态要么是先手必胜,要么是先手必败!因此,在对局时,我方要做的就是占据必胜,把必败留给对方。,优点缺点,实现方法,这正是解“对策问题”的核心思想!,核心思想,浅析解“对策问题”的两种思路,一般性方法 与 特殊性方法,思路方向,胜负规则,优点缺点,实现方法,“一般性方法”从统一的角度,考察所有状态,来决定对局策略。“特殊性方法”从特殊的角度,考察一类状态,来决定对局策略。,核心思想,延伸类比,浅析解“对策问题”的两种思路,结 语,“对策论”是运筹学的一个重要分支。本文通过取石子问题,简单的阐述了解决一类“对策问题”的两种思路,也是我的一点心得,但并不能涵盖万一。,文中介绍的“一般性方法”与“特殊性方法”既是方法,也是思路,更是一种思想。在解其他类型的题目时,也同样可以应用这两种思考方法。,浅析解“对策问题”的两种思路,结 语,“纸上得来终觉浅,绝知此事要躬行。”我们还需要不断努力,不断实践,不断探索。只有实践多了,方能:,1充分运用正向与逆向的思维,1从各个角度观察问题,1从一般到特殊,从特殊到一般,1取长补短,采取合理的实现方法,浅析解“对策问题”的两种思路,结 语,运筹于帷幄之中,决胜于千里之外,

    注意事项

    本文(算法合集之《浅析解对策问题的两种思路》.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开