测量技术基础-精度与测量.ppt
精度与测量,第三章,测量技术基础,测量技术基础,第三章,第一节 技术测量的概念,第二节 计量器具和测量方法,第三节 测量误差及数据处理,第四节 光滑工件尺寸的检验,第三章,测量技术基础,在工业生产中,测量技术是进行质量管理的重要手段,是保证产品质量不可缺少的重要环节,是贯彻质量标准的技术保证。随着工业技术的进步,对测量技术的精度要求越来越高。1900年长度测量的精度达到0.01mm;1970年长度测量的精度要求已达到0.01m。目前,采用纳米级测量方法扫描隧道显微镜(STM),长度测量的精度可达0.050nm。,第一节 技术测量的概念,第三章,测量技术基础,一、测量的基本概念,在机械制造业中所说的技术测量或精密测量主要是指几何参数的测量,包括长度、角度、表面粗糙度和形位误差等的测量。测量就是将被测量和一个作为测量单位(计量单位)的标准量,通过一定的测量工具和测量方法进行比较,从而确定被测的量值过程。,技术测量的概念,测量的基本概念,若被测量为L,计量单位为u。经比较而得到的被测量值为 Lqu 称为基本的测量公式。例如,某一被测长度L,与毫米(mm)作单位的u进行比较,得到的比值q为20,则被测量长度L20mm。,技术测量的概念,测量的基本概念,测量过程包括测量对象、计量单位、测量方法及测量精度等四个要素。1.测量对象:在技术测量中指几何量,包括长度、角度、表面粗糙度及形位公差等。由于几何量的特点是种类繁多、形状又各式各样,因此对于它们的特性、被测参数的定义以及标准等都必须加以研究和熟悉,以便进行测量。,技术测量的概念,测量的基本概念,2.计量单位:我国计量单位一律采用中华人民共和国法定计量单位。在几何量测量中,长度单位是米(m),其它常用单位有毫米(1mm10-3m)、微米(1m10-3mm)和纳米(1nm10-3m);角度单位是弧度(rad),其它常用单位还有度()、分()和秒()。,技术测量的概念,测量的基本概念,3.测量方法:是指进行测量时所采用的测量原理、计量器具和测量条件的总和。根据被测对象的特点,如精度、大小、轻重、材质、数量等来确定所用的计量器具,分析研究被测参数的特点和它与其它参数的关系,确定最合适的测量方法以及测量的主客观条件。,技术测量的概念,测量的基本概念,4.测量误差:是指测量结果与被测量的真值的差。由于任何测量过程总不可避免地会出现或大或小的测量误差,误差大说明测量结果离真值远、精度低。对于每一测量过程的测量结果都应给出一定的测量误差。,技术测量的概念,测量的基本概念,1量块的作用 量块又称块规,是常用的单值量具,用途很广,除了作为长度基准的传递媒介外,还可有以下的作用:1)生产中被用来检定和校准测量工具或量仪;2)相对测量时用来调整量具或量仪的零位;3)有时量块还可以直接用于精密测量、精密划线和精密机床的调整。,量块的基本知识,技术测量的概念,二、量块的基本知识,2量块的构成 量块用铬锰钢等特殊合金钢或线膨胀系数小、性质稳定、耐磨以及不易变形的其它材料制成。量块的形状有长方体和圆柱体两种。常用的是长方体。测量面极为光滑、平整,其表面粗糙度为Ra0.0080.012m。两测量面间的距离即为量块的工作长度,称为标称长度(公称尺寸)。标称长度到5.5mm的量块,其标称长度值刻印在上测量面上;标称长度大于5.5mm的量块,其标称长度值刻印在上测量面的左侧平面上。,量块的基本知识,技术测量的概念,3量块的精度 按国际GB/T 6093-2001的规定,量块按制造精度分为 5级,即K、0、1、2、3级。其中K级精度最高,3级精度最低,K级为校准级。级主要是根据量块长度极限偏差、量块长度变动量允许值、测量面的平面度、量块测量面的粗糙度及量块的研合性等指标来划分的。,量块的基本知识,技术测量的概念,量块长度是指量块上测量面上任一点到与此量块下测量面相研合的辅助体(如平晶)表面之间的垂直距离。量块的中心长度是指量块测量面上中心点的量块长度。,量块的基本知识,技术测量的概念,量块长度的极限偏差是指量块中心长度与标称长度之间允许的最大误差。量块长度变动量是指量块的最大量块长度与最小量块长度之差。各级量块长度的极限偏差和量块长度变动量允许值,如表 5-1所示。,量块的基本知识,技术测量的概念,量块在使用一段时间后,会因磨损而引起尺寸减小。按“级”使用量块(以标称长度为准),会引入量块本身的制造误差和磨损引起的误差。因此,需要定期检定出全套量块的实际尺寸,再按检定的实际尺寸来使用量块。标准又规定了量块按其检定精度分为五等。即l、2、3、4、5等。其中1等精度最高,5等精度最低。,量块的基本知识,技术测量的概念,等主要是根据量块中心长度测量的极限偏差和平面平行性允许偏差来划分的。量块的平面平行性允许偏差,是指量块上任一点的量块长度与量块中心长度所容许的最大误差。各等量块中心长度测量的极限偏差和平面平行性允许偏差,如表5-2所示。,量块的基本知识,技术测量的概念,量块按“级”使用时,是以标记在量块上的标称尺寸作为工作尺寸,该尺寸包含了量块实际制造误差。按“等”使用时,则是以量块检定后给出的实测中心长度作为工作尺寸,该尺寸包含了量块检定时的测量误差。一般来说,检定时的测量误差要比制造误差小得多。所以量块按“等”使用时其精度要比按“级”使用要高。,量块的基本知识,技术测量的概念,4量块的选用 量块是定尺寸量具,一个量块只有一个尺寸。为了满足一定尺寸范围的不同要求,量块可以利用粘合性组合使用。根据国标 GB6093-2001规定,我国成套生产的量块共有17种套别,每套的块数为 91、83、46、38、12、10、8、6、5等。表5-3列出了83块的量块尺寸。,量块的基本知识,技术测量的概念,使用量块时,为了减少量块的组合误差,应尽量减少量块的组合块数,一般不超过四块。选用量块时,应从所需组合尺寸的最后一位数开始,每选一块至少应减去所需尺寸的一位尾数,称为尾数递推法。例如,从83块一套的量块中选取尺寸为67.385mm的量块组,选取方法为:67.385 所需尺寸-1.005 第一块量块尺寸 66.380-1.38 第二块量块尺寸 65.000-5.0 第三块量块尺寸 60.0 第四块量块尺寸,量块的基本知识,技术测量的概念,第三章,测量技术基础,第二节 计量器具和测量方法,计量器具是单独地或连同辅助设备一起用以进行测量的器具。,计量器具的分类,一、计量器具的分类,计量器具和测量方法,计量器具可按其测量原理、结构特点及用途等分为四类。1标准量具 以固定形式复现量值的计量器具称为标准量具。通常用标准量具来校对和调整其它计量器具,或作为标准量与被测工件进行比较。单值量具,如量块、角度量块;多值量具,如基准米尺、线纹尺、90角尺。,计量器具的分类,计量器具和测量方法,2通用计量器具 通用计量器具通用性强,可测量某一范围内的任一尺寸(或其它几何量),能获得具体读数值。按其结构又可分为以下几种:(1)固定刻线量具 具有一定划线,在一定范围内能直接读出被测量数值的量具。如钢直尺、卷尺等。,计量器具的分类,计量器具和测量方法,(2)游标量具 直接移动测头实现几何量测量的量具。这类量具有游标卡尺、深度游标卡尺、游标高度卡尺以及游标量角器等。,(3)微动螺旋副式量仪 用螺旋方式移动测头来实现几何量测量的量仪。如外径干分尺、内径千分尺、深度千分尺等。,计量器具的分类,计量器具和测量方法,(4)机械式量仪 用机械方法来实现被测量的变换和放大,以实现几何量测量的量仪。如百分表、杠杆百分表、杠杆齿轮比较仪、扭簧比较仪等。,(5)光学式量仪 用光学原理来实现被测量的变换和放大,以实现几何量测量的量仪。如光学计、测长仪、投影仪、干涉仪等。(6)气动式量仪 以压缩气体为介质,将被测量转换为气动系统状态(流量或压力)的变化,以实现几何量测量的量仪。如水柱式气动量仪、浮标式气动量仪等。,计量器具的分类,计量器具和测量方法,(7)电动式量仪 将被测量变换为电量,然后通过对电量的测量来实现几何量测量的量仪。如电感式量仪、电容式量仪、电接触式量仪、电动轮廓仪等。,计量器具的分类,计量器具和测量方法,(8)光电式量仪 利用光学方法放大或瞄准,通过光电元件再转换为电量进行检测,以实现几何量测量的量仪。如光电显微镜、光栅测长机、光纤传感器、激光准直仪、激光干涉仪等。,3专用计量器具 专门用来测量某种特定参数的计量器具。如圆度仪、渐开线检查仪、丝杆检查仪、极限量规等。,计量器具的分类,计量器具和测量方法,4检验夹具 用量具、量仪和定位元件等组合成的一种专用的检验工具。当配合各种比较仪时,能用来检验更多和更复杂的参数。,广义的测量方法,是指进行测量时所用的,按类别叙述的一组操作逻辑次序。但是在实际工作中,往往单纯从获得测量结果的方式来理解测量方法,它可按不同特征分6类。,测量方法的分类,二、测量方法的分类,计量器具和测量方法,1所测得的量是否为欲测之量(1)直接测量 直接从计量器具的读数装置上得到欲测之量的数值或对标准值的偏差。例如用游标卡尺、千分尺测量外圆直径,用比较仪测量欲测尺寸。,测量方法的分类,计量器具和测量方法,(2)间接测量 测量有关量,并通过一定的函数关系式,求得欲测之量的数值。例如用“弦高法”测量圆柱体直径,由弦长S与弦高H的测量结果,可求得直径D的数值。DS2(4H)H,2测量结果的读数值不同(1)绝对测量 测量时从量器具上直接得到被测参数的整个量值。例如用游标卡尺测量小工件尺寸。(2)相对测量 在计量器具的读数装置上读得的是被测之量对于标准量的偏差值。例如在立式光学比较仪上测量活塞销直径X。先用量块(标准量)X0调整零位,实测后获得的示值X就是直径相对于量块(标准量)的偏差值,实际直径XX0+X。,测量方法的分类,计量器具和测量方法,3被测工件表面与计量器具测头是否有机械接触(1)接触测量 计量器具测头与工件被测表面直接接触,并有机械作用的测量力。例如用千分尺、游标卡尺测量工件。为了保证接触的可靠性,测量力是必要的,但它可能使计量器具或工件产生变形,从而造成测量误差。,测量方法的分类,计量器具和测量方法,(2)非接触测量 计量器具的敏感元件与被测工件表面不直接接触,没有机械作用的测量力。可利用光、气、电、磁等物理量关系使测量装置的敏感元件与被测工件表面联系。例如用干涉显微镜、磁力测厚仪、气动量仪等的测量。非接触测量没有测量力引起的测量误差,因此特别适用于薄结构易变形工件的测量。,测量方法的分类,计量器具和测量方法,4测量在工艺过程中所起作用(1)主动测量 零件在加工过程中进行的测量。测量结果直接用来控制零件的加工过程,决定是否需要继续加工或判断工艺过程是否正常,能及时防止废品的产生,主动测量又称为积极测量。一般自动化程度高的机床具有主动测量的功能,如数控机床、加工中心等先进设备。(2)被动测量 零件加工完成后进行的测量。其结果仅用于发现并剔除废品,被动测量又称消极测量。,测量方法的分类,计量器具和测量方法,5零件上同时被测参数的多少(1)单项测量 单独地彼此没有联系地测量零件的单项参数。例如分别测量齿轮的齿厚、齿形、齿距,螺纹的中径、螺距等。这种方法一般用于量规的检定、工序间的测量,或者为了工艺分析、调整机床等目的。(2)综合测量 测量零件几个相关参数的综合效应或综合参数,从而综合判断零件合格性。例如测量螺纹作用中径、测量齿轮的运动误差等。综合测量一般用于终结检验(验收检验),测量效率高,能有效保证互换性,特别用于成批或大量生产中。,测量方法的分类,计量器具和测量方法,6被测工件在测量时所处状态(1)静态测量 测量时被测零件表面与计量器具测头处于静止状态。例如用齿距仪测量齿轮齿距,用工具显微镜测量丝杠螺距等。(2)动态测量 测量时被测零件表面与计量器具测头处于相对运动状态,它能反映生产过程中被测参数的变化过程。例如用激光比长仪测量精密线纹尺,用电动轮廓仪测量表面粗糙度等。,测量方法的分类,计量器具和测量方法,度量指标是选择和使用计量器具、研究和判断测量方法正确性的依据,是表征计量器具的性能和功能的指标。,基本度量指标,三、计量器具的基本度量指标,计量器具和测量方法,基本度量指标主要有以下几项:(1)刻线间距c 计量器具标尺或刻度盘上两相邻刻线中心线间的距离。为了适于人眼观察和读数,刻线间距一般为12.5mm。(2)分度值(刻度值)i 计量器具标尺上每一刻线间距所代表的量值即分度值。一般长度量仪中的分度值有0.1mm、0.05mm、0.02mm、0.01mm、0.001mm、0.0005mm等。实验用立式光学比较仪i1m0.001mm。,基本度量指标,计量器具和测量方法,刻线间距,分度值,在数字式量仪中,不称分度值而称为分辨率。分辨率是指量仪显示的最末一位数所代表的量值。如数显千分表的分辨率为1m。,基本度量指标,计量器具和测量方法,(3)测量范围 计量器具所能测量的被测量最小值到最大值的范围称为测量范围。外径百分尺的测量范围为025mm、2550mm等;立式光学比较仪的测量范围为0180mm。(4)示值范围 由计量器具所显示或指示的最小值到最大值的范围。立式光学比较仪的示值范围为100m。,基本度量指标,计量器具和测量方法,测量范围,示值范围,(5)灵敏度S 计量器具反映被测几何量微小变化的能力。如果被测参数的变化量为L,引起计量器具的示值变化量为x,则灵敏度Sx/L。当分子分母是同一类量时,灵敏度又称放大比K。(6)示值误差 计量器具显示的数值与被测量的真值之差为示值误差。它主要由仪器误差和仪器调整误差引起。一般可用量块作为真值来检定计量器具的示值误差。,基本度量指标,计量器具和测量方法,(7)修正值 为消除计量器具系统测量误差,用代数法加到测量结果上的值称为校正值。它与计量器具的系统测量误差的绝对值相等而符号相反。(8)测量结果的重复性 在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性。重复性可以用测量结果的分散性定量地表示。(9)测量不确定度 表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。此参数可以是标准偏差或其倍数,或说明了置信水准的区间的半宽度。,基本度量指标,计量器具和测量方法,第三节 测量误差及数据处理,第三章,测量技术基础,测量中,不管使用多么精确的计量器具,采用多么可靠的测量方法,都不可避免地产生误差。如果被测量的真值为L,被测量的测得值为l,则测量误差用下式表示 lL 上式表达的测量误差也称绝对误差。,误差的基本概念,一、测量误差的基本概念,测量误差及数据处理,相对误差是指测量的绝对误差与被测量真值L之比,通常用百分数表示,即(lL)/LL100 l100 是无量纲的量。,误差的基本概念,测量误差及数据处理,在实际测量中,产生测量误差的原因很多,主要有以下几个方面:1计量器具误差 它是指计量器具设计、制造和装配调整不准确而产生的误差,分为设计原理误差、仪器制造和装配调整误差。,误差的来源及防止,二、测量误差的来源及防止,测量误差及数据处理,设计原理误差 在设计计量器具时,为了简化结构,采用近似设计所产生的误差。游标卡尺测量轴径所引起的误差是设计原理误差。用游标卡尺测量时,不符合阿贝原则。,误差的来源及防止,测量误差及数据处理,根据长度测量的阿贝原则,在设计计量器具或测量工件时,应将被测长度与基准长度置于同一直线上。,仪器制造和装配调整误差 仪器读数装置中刻线尺、刻度盘等的刻线误差和装配时的偏斜或偏心引起的误差;仪器传动装置中杠杆、齿轮副、螺旋副的制造以及装配误差;光学系统的制造、调整误差;传动件间的间隙、导轨的平面度、直线度误差;计量器具各零部件本身的制造误差、变形和磨损等引起的误差。,误差的来源及防止,测量误差及数据处理,2基准件误差 作为基准件使用的量块或标准件等本身存在的制造误差和使用过程中磨损产生的误差。特别是用相对测量时,基准件的误差直接反映到测量结果中。在生产实践中一般取基准件的误差占总测量误差的1/51/3,并且要经常检验基准件。,误差的来源及防止,测量误差及数据处理,3测量方法误差 它是指测量时选用的测量方法不完善(包括工件安装不合理、测量方法选择不当、计算公式不准确等)或对被测对象认识不够全面引起的误差。如前述测量大型工件的直径,可以采用直接测量法,也可采用测量弦长和弓高的间接测量法,其测量误差是不相同的。,误差的来源及防止,测量误差及数据处理,4测量力误差 是指在进行接触测量中,由于测量力使得计量器具和被测工件产生弹性变形而产生的误差。一般计量器具的测量力大都控制在2N之内,高精度计量器具的测量力控制在1N之内。,误差的来源及防止,测量误差及数据处理,5环境误差 测量时的环境条件不符合标准条件所引起的误差。包括有温度、湿度、气压、振动、灰尘等因素引起的误差。其中温度是主要的,其余因素仅在精密测量时才考虑。测量时,当计量器具和被测工件的温度偏离标准温度20而引起的测量误差由下式计算 L(1t1-2t2),误差的来源及防止,测量误差及数据处理,6主观误差 它是指测量人员的主观因素(加技术熟练程度、工件疲劳程度、测量习惯、思想情绪等)引起的误差。例如,计量器具调整不正确、瞄准不准确、估读误差等都会造成测量误差。,误差的来源及防止,测量误差及数据处理,根据测量误差的性质、出现规律和特点,可分为三大类,即系统误差、随机误差和粗大误差。,误差的来源及防止,三、测量误差的分类,测量误差及数据处理,1系统误差 在同一条件下,多次测量同一量值时,误差的绝对值和符号保持恒定;或者当条件改变时,其值按某一确定的规律变化的误差,称为系统误差。系统误差又可分为常值系统误差和变值系统误差。,误差的来源及防止,测量误差及数据处理,(1)常值系统误差(定值系统误差)在相同测量条件下,多次测量同一量值时,其大小和方向均不变的误差。例如基准件误差、仪器的原理误差和制造误差等。(2)变值系统误差(变动系统误差)在相同测量条件下,多次测量同一量值时,其大小和方向按一定规律变化的误差。例如温度均匀变化引起的测量误差(按线性变化),刻度盘偏心引起的角度测量误差(按正弦规律变化)等。,误差的来源及防止,测量误差及数据处理,2随机误差 在相同的测量条件下,多次测量同一量值时,其绝对值大小和符号均以不可预知的方式变化着的误差,称为随机误差。但是对多次重复测量的随机误差,按概率与统计方法进行统计分析发现,它们是有一定规律的。,误差的来源及防止,测量误差及数据处理,3粗大误差 由于测量不正确等原因引起的明显歪曲测量结果的误差或大大超出规定条件下预期的误差,称为粗大误差。一个正确的测量,不应包含粗大误差,所以在进行误差分析时,主要分析系统误差和随机误差,并应剔除粗大误差。,误差的来源及防止,测量误差及数据处理,精度和误差是相对的概念,误差是不准确、不精确的意思,即指测量结果偏离真值的程度。1精密度,误差的来源及防止,四、测量精度,测量误差及数据处理,表示测量结果中随机误差大小的程度,表明测量结果随机分散的特性。是用于评定随机误差的精度指标。在测量中随机误差愈小,则精密度愈高。,2正确度,3准确度,表示测量结果中系统误差大小的程度,可用修正值来消除。是用于评定系统误差的精度指标。在测量中系统误差愈小,则正确度愈高。,表示测量结果中随机误差和系统误差综合影响的程度,说明测量结果与真值的一致程度。在测量中系统误差和随机误差都小,则准确度愈高。,误差的来源及防止,测量误差及数据处理,随机误差小而系统误差大,即精密度高而正确度低。,系统误差小而随机误差大,即正确度高而精密度低。,随机误差和系统误差都小,即准确度高。,1随机误差的分布及其特征 在随机误差中,单次测量之间无确定的规律。按概率与统计方法进行统计分析发现,它们是有一定规律的。随机误差通常是服从正态分布规律的。正态分布曲线方程为,误差的来源及防止,五、随机误差的特征及其评定,测量误差及数据处理,2)绝对值相等的正、负误差出现的次数大致相等,即对称性;3)在一定条件下,误差的绝对值不会超过一定界限(即3),即有界性;4)当测量次数N无限增加时,随机误差的算术平均值趋于零,即抵偿性。,误差的来源及防止,测量误差及数据处理,随机误差具有以下四个基本特性:1)绝对值小的误差比绝对值大的误差出现的次数多,即集中性(单峰性);,误差的来源及防止,测量误差及数据处理,1)算术平均值,对同一尺寸进行一系列等精度测量,得到l1、l2、lN一系列不同的测量值,则,误差的来源及防止,测量误差及数据处理,由公式lL可知 1l1L 2l2L NlNL将等式两边相加,整理得 将等式两边同除以N,整理得,误差的来源及防止,测量误差及数据处理,由随机误差抵偿性可知:当N时,则有。用算术平均值 作为测量结果是可靠、合理的。测量中各测得值与算术平均值的代数差叫做残余误差,即。当测量次数N时,有。,2)标准偏差 用算术平均值表示测量结果是可靠的,但它不能反映测得值的精度。通常用标准偏差反映测量精度的高低。(1)测量列中任一测得值的标准偏差 根据误差理论,等精度测量列中单次测量(任一测量值)的标准偏差可用下式计算,误差的来源及防止,测量误差及数据处理,误差的来源及防止,测量误差及数据处理,可作为随机误差评定指标来评定测得值的精密度。,误差的来源及防止,测量误差及数据处理,一般随机误差主要分布在3范围之内。在3范围内出现的概率为99.73,超出3之外的概率仅为0.27,属于小概率事件。可以把3看作随机误差的极限值,记作lim3。lim也是测量列中任一测得值的测量极限误差,极限误差是单次测量标准偏差的3倍,或称为概率为99.73的随机不确定度,随机误差绝对值不会超出的限度,单次测量结果可表示为 Lli3,由计算公式可知,计算值必须具备三个条件:真值L必须已知;测量次数要无限次(N);无系统误差。在实际测量中常采用残余误差vi代替i来估算标准偏差。,误差的来源及防止,测量误差及数据处理,(2)标准偏差的估计值,标准偏差的估算值 为,标准偏差代表一组测量值中任一测得值的精密度。但在系列测量中,是以测得值的算术平均值作为测量结果的。更重要的是要知道算术平均值的标准偏差。,误差的来源及防止,测量误差及数据处理,(3)测量列算术平均值的标准偏差,测量列算术平均值的标准偏差 与测量列中任一测得值的标准偏差存在如下关系 其估计值 为,1系统误差处理 在测量过程中,产生系统误差的因素是复杂的,有多种因素。系统误差的数值往往比较大,对测量结果的影响是很明显的。因此在测量数据中如何发现进而消除或减少系统误差,是提高测量精确度的一个重要问题。,误差的来源及防止,六、测量列中各类测量误差的处理,测量误差及数据处理,1)常值系统误差的发现 由于常值系统误差的大小和方向不变,对测量结果的影响也是一个定值。它不能从一系列测得值的处理中揭示,只能通过实验对比法去发现,即通过改变测量条件进行不等精度测量来揭示常值系统误差。例如,在相对测量中,用量块作标准件并按其标称尺寸使用时,由于量块的尺寸偏差引起的系统误差,可用高精度的仪器对量块实际尺寸进行检定来发现它,或用更高精度的量块进行对比测量来发现。,误差的来源及防止,测量误差及数据处理,2)变值系统误差的发现 变值系统误差可以从系列测量值的处理和分析观察中发现,方法有多种。,误差的来源及防止,测量误差及数据处理,常用的方法有残差观察法,即将测量列按测量顺序排列(或作图)观察各残余误差的变化规律。,误差的来源及防止,测量误差及数据处理,若残余误差大体正负相同,无显著变化、则不存在变值系统误差。,若残余误差有规律地递增或递减,且其趋势始终不变,则可认为存在线性变化的系统误差。,若残余误差有规律地增减交替,形成循环重复时,则认为存在周期性变化的系统误差。,3)系统误差的消除(1)误差根除法 从产生误差的根源上消除,这是消除系统误差的最根本方法。例如,为了防止测量过程中仪器零位的变动,测量开始和结束时都需检查仪器零位;又如,为了防止仪器因长期使用磨损等因素而降低精度,要定期进行严格的检定与维修;再如,量块按“等”使用即可消除量块的制造和磨损误差。,误差的来源及防止,测量误差及数据处理,(2)误差修正法 预先检定出计量器具的系统误差,将其数值反向后作为修正值,用代数法加到实际测得值上,可得到不包含该系统误差的测量结果。(3)误差抵消法 根据具体情况拟定测量方案,进行两头测量,使得两次测量读数时出现的系统误差大小相等、方向相反,再取两次测得值的平均值作为测量结果,即可消除系统误差。例如,测量螺纹零件的螺距时,分别测出左、右牙面螺距,然后进行平均,则可抵消螺纹零件测量时安装不正确引起的系统误差。,误差的来源及防止,测量误差及数据处理,误差的来源及防止,测量误差及数据处理,在具有随机误差的测量列中,常以算术平均值 表征最可靠的测量结果,以标准偏差表征随机误差。其处理方法如下:1)计算测量列算术平均值;2)计算测量列中任一测得值的标准偏差的估计值;3)计算测量列算术平均值的标准偏差的估计值;4)确定测量结果。多次测量结果可表示为,2随机误差的处理,3粗大误差的处理 粗大误差的数值比较大,会对测量结果产生明显的歪曲。必须采用一定的方法判断并加以剔除。判断粗大误差的基本原则,应以随机误差的实际分布范围为依据,凡超出该范围的误差,就有理由视为粗大误差。判断粗大误差的准则如:拉依达准则(或称 3准则),肖维勒准则等。,误差的来源及防止,测量误差及数据处理,误差的来源及防止,测量误差及数据处理,3准则 3准则认为,当测量列服从正态分布时,残余误差超出3的情况不会发生,故将超出3的残余误差作为粗大误差,即 则认为该残余误差对应的测得值含有粗大误差,在误差处理时应予以剔除。,对直接测量列的综合数据处理应按以下步骤进行:1)判断测量列中是否存在系统误差,倘若存在,则应设法加以剔除或减少;2)计算测量列的算术平均值、残余误差和标准偏差的估计值;3)判断粗大误差,若存在,则应剔除并重新组成测量列,重复上述步骤2),直至无粗大误差为止;4)计算测量列算术平均值的标准偏差估计值和测量极限偏差;5)确定测量结果。,误差的来源及防止,七、直接测量列的数据处理,测量误差及数据处理,例题一,测量误差及数据处理,误差的来源及防止,对一轴颈进行十次测量,测得值列于下表中,试求其测量结果。,误差的来源及防止,测量误差及数据处理,例题一,3计算残余误差vi 根据残余误差观察法进一步判断,测量列中也不存在系统误差。4计算单次测量的标准偏差估计值,误差的来源及防止,测量误差及数据处理,误差的来源及防止,测量误差及数据处理,5判断粗大误差 用3准则,而表中第二列vi最大绝对值,因此测量列中不存在粗大误差。,例题一,误差的来源及防止,测量误差及数据处理,6计算测量列算术平均值的标准偏差的估计值 7计算测量列极限误差 8确定测量结果 即该轴颈的测量结果为30.048mm,其误差在0.0026mm范围,置信概率为99.73。,例题一,5判断粗大误差 用3准则,而表中第二列vi最大绝对值,因此,测量列中不存在粗大误差。,第四节 光滑工件尺寸的检验,第三章,测量技术基础,零件的合格与否,必须通过正确的测量或检验,才能判断。设计时所给定的零件尺寸和公差要求是检测的依据;而正确的检测,则是满足设计要求的技术保证。光滑工件的尺寸通常可采用量具(仪)或光滑极限量规进行检测。无论采用哪种验收方法,只有经检验后断定在规定的极限尺寸内,该工件才能被认为合格。,检验的一般原则,一、检验的一般原则,光滑工件尺寸的检验,通用计量器具是指带有刻度的变值测量器具。通常包括游标尺、百分尺以及在车间内使用的分度值不小于0.0005mm(放大倍数不大于2000倍)的比较仪。这类量具通用性强,适用范围广。一般采用两点法测量工件的实际尺寸。,用普通计量器具检验,二、用通用计量器具检验,光滑工件尺寸的检验,1测量误差对测量结果的影响 用任何量具测量都存在测量误差,因些在测量时将会发生误判。,用普通计量器具检验,光滑工件尺寸的检验,采用测量极限误差为4m的量具验收 的工件时的情况,测量误差存在,使被测工件实际被控制的公差范围发生了变化。,2验收极限的确定与安全裕度 检验有配合要求的工件时,应采用内缩方案,即从工件规定的最大实体极限(MML)和最小实体极限(LML),各向工件公差带内缩一安全裕度值(A),来确定工件的验收极限。安全裕度(A)的数值由工件公差确定(表6-1)。,用普通计量器具检验,光滑工件尺寸的检验,对应于孔或轴最大实体尺寸的那个极限尺寸,对应于孔或轴最小实体尺寸的那个极限尺寸,1)最大实体状态(MMC)最大实体尺寸(MMS)孔或轴在尺寸公差范围内,具有允许的材料量为最多时的状态,称为最大实体状态(简称MMCMaximum Material Condition)。在此状态下的极限尺寸,称为最大实体尺寸(MMSMaximum Material Size)。它是孔的最小极限尺寸min和轴的最大极限尺寸dmax的统称。,用普通计量器具检验,光滑工件尺寸的检验,例如:孔 mm 的最大实体尺寸为 50.000mm;轴 mm 的最大实体尺寸为 49.975mm。,用普通计量器具检验,光滑工件尺寸的检验,2)最小实体状态(LMC)最小实体尺寸(LMS)孔或轴在尺寸公差范围内,具有允许的材料量为最少时的状态,称为最小实体状态(简称LMCLeast Material Condition)。在此状态下的极限尺寸,称为最小实体尺寸(LMSLeast Material Size)。它是孔的最大极限尺寸max和轴的最小极限尺寸dmin的统称。,用普通计量器具检验,光滑工件尺寸的检验,例如:孔 mm 的最小实体尺寸为 50.039mm;轴 mm 的最小实体尺寸为 49.950mm。,用普通计量器具检验,光滑工件尺寸的检验,按加工过程特征,最大实体尺寸即合格工件的起始尺寸(始限),最小实体尺寸即合格工件的终止尺寸(终限)。按用极限量规检验特征,最大实体尺寸即通极限,最小实体尺寸即止极限,它们分别由通规与止规控制。,用普通计量器具检验,光滑工件尺寸的检验,采用内缩方案的原因:(1)考虑测量器具所存在的测量误差的影响。(2)补偿因温度、工件形状误差及压陷效应等因素所引起的误差。安全裕度A 值由两部分合成:一是测量器具不确定度的允许值u1,占A值的90;另一是补偿温度、工作形状误差等的不确定度允许值u2,占A的45。即,用普通计量器具检验,光滑工件尺寸的检验,3计量器具的选择 计量器具的正确选择,既要考虑检验精度,以保证被测工件的质量;又要兼顾检验的经济性。当计量器具不确定度的允许值u1被确定后,就可以此为依据选择量具。选择时,应使计量器具的不确定度小于或等于所规定的u1值,即满足 u1u量具。这样,就能保证被测工件产生误收的机会尽可能小。常用计量器具的不确定度见表5-8、表5-9、表5-10。,用普通计量器具检验,光滑工件尺寸的检验,例题二,光滑工件尺寸的检验,用普通计量器具检验,解:(1)确定安全裕度A 工件公差为0.039mm,在表5-8的档中可查得:A0.0039 u10.0035mm(2)选择计量器具 在表5-9中查得分度值为0.005mm(放大倍数为250倍)的比较仪,其不确定度u器具0.0030mmu10.0035mm,故能满足要求。,某被测工件为。试选择计量器具并确定验收极限。,例题二,用普通计量器具检验,光滑工件尺寸的检验,(3)确定验收极限从公差带图可见:上验收极限MMSA 500.0250.0039 49.9711mm 下验收极限LMSA 500.0640.0039 49.9399mm,当现有测量器具的不确定(u1)达不到“小于或等于档允许值(u1)”这一要求时,可选用表6-1中的第档(u1),重新选择测量器具,依次类推,第档(u1)满足不了要求时,可选用第档(u1)。此法虽然解决了量具的选用问题,但工件的最小生产公差将进一步压缩,误废率增加。此外,也可将百分尺用作比较测量,以减小测量的不确定度,提高百分尺的测量精度。,用普通计量器具检验,光滑工件尺寸的检验,例题三,光滑工件尺寸的检验,用普通计量器具检验,解:(1)确定安全裕度A 工件公差为0.039mm,在表5-8的档中可查得:A0.0039 u10.0035mm(2)选择计量器具 工件尺寸50mm,在表5-10中查得分度值为0.01mm的外径千分尺,其不确定度u器具0.004mmu10.0035mm,故不能满足要求。,某被测工件为,因缺乏比较仪,试另选计量器具并确定验收极限。,光滑工件尺寸的检验,用普通计量器具检验,例题三,(3)重新确定安全裕度A 工件公差为0.039mm,在表5-8的档中可查得:u10.0059mm 仍采用分度值为0.01mm的外径千分尺。此时u器具0.004mmu10.0059mm,故能满足要求。,例题三,用普通计量器具检验,光滑工件尺寸的检验,(4)确定验收极限从公差带图可见:上验收极限MMSA 500.0250.0066 49.9684mm 下验收极限LMSA 500.0640.0066 49.9426mm,习 题:3-1 3-2 3-3思考题:3-3 3-4 3-6,本 章 作 业,返回主目录,返回本章第一页,谢 谢 大 家!,第三章,测量技术基础,