欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    流动传热燃烧的数值计算.ppt

    • 资源ID:6306661       资源大小:288KB        全文页数:50页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    流动传热燃烧的数值计算.ppt

    第一章:离散化方法,离散化就是将原微分方程在整个求解域内所考虑的物理量求解问题,转化为对求解域内有限个位置(网格结点)上物理量的求解问题。用各网格结点上定义的离散状态量来代替在求解域内连续分布的状态量。这样,将原来的微分方程连同初、边界条件一起,离散成为一组代数方程。对于给定的微分方程,对应有不同的离散化方程,它们之间的差别是由于所取的分布以及推导离散化方程的方法不同造成的。,1.1有限差分法,差分法的基本思想是用差商代替微商。用差分法离散微分方程的具体方法有很多种,对同一微分方程可以建立不同的差分方程。,差分方程的建立,以一维问题为例,设x3-x2=x2-x1=x由Taylor级数展开可得:,则 可以表示为:,236,则 可以表示为:,1.1.2网格划分,离散过程包括两个方面:微分方程的离散化;求解域的离散化。设微分方程有两个自变量x,t。微分方程的解应是x和t的函数u(x,t),而差分法(数值方法)求的是若干个离散点(x=j x,t=nt)上u(x,t)的近似值 因此,首先要在求解域上指定一系列离散点。,一般取时间步长t=const.,空间步长x=const.对于二维和三维问题,不要求x=y=z。tn=nt 和xj=jx 的直线为网格线,其交点(xj,tn)称为网格结点。网格设计好之后,就可以把连续求解域上的微分方程离散化为有限个网格结点上的差分方程。,例:用差分法求解抛物型方程,设:tn=nt,xj=jx,n=0,1,2,.,N,j=0,1,2,.,J 点(xj,tn)可以用(j,n)表示 u(xj,tn)用 表示令微分方程中的一阶导数用向前差分,二阶导数用中心差分,则与原微分方程对应的差分方程为:,显式格式:解可以由明显的公式计算出来,不需要求解方程组。FTCS隐式格式:解不能简单地求出,需要求解代数方程组。全隐式格式,1.1.3 差分方程的相容性,用差分方程代替微分方程之后产生了一个问题,即所采用的差分方程是否逼近原来的微分方程?相容性是差分方程的一个基本特性,它既反映了差分方程是否收敛到相应的微分方程,也反映了截断误差。,截断误差:用ujn代替 u(xj,tn)的差分方程与在点(xj,tn)处的微分方程之差。E=O(tq+xp)差分方程的精度:如果E=O(tq+xp),则称此差分方程对t是q阶精度,对x是p阶精度。,相容性:如果当网格步长x0,t0时,差分方程的截断误差也E0,此时在每一网格结点上的差分方程与原微分方程是等同的,则该差分方程与相应的微分方程是相容的。,1.1.4 差分方程的收敛性,差分方程能否应用,要看差分方程的近似解能否任意地逼近微分方程的准确解。首先要考虑差分方程理论上的精确解能否任意地逼近微分方程的准确解,其次还要考虑求解差分方程过程中产生的误差。,离散误差:差分方程的精确解ujn与微分方程的准确解 u(xj,tn)之差。ejn=ujn-u(xj,tn)收敛性:如果当网格步长x0,t0时,任何网格结点上的离散误差ejn 0,即 ujn u(xj,tn),则该差分方程是收敛的。,离散误差的大小与方程的截断误差有关。在网格步长相同的情况下,截断误差的阶数提高会使离散误差ejn 减小。对同一离散格式,网格加密也会使离散误差ejn 减小。,收敛性是讨论当 x0,t0 时,差分方程的精确解是否收敛于原微分方程的准确解。相容性是讨论当x0,t0 时,差分方程是否逼近原微分方程,相容并不能保证收敛。,举例:对于FTCS格式,当S=1,1/2,1/6时,考察结点xj=0.4,tn=8处的数值解,并与微分方程在该处的准确解 u(0.4,8)=45.03963比较。其中=0.01,l=1.0,1.1.5 差分方程的稳定性,求解差分方程的过程中不可避免地会引入误差(舍入误差、初始误差等),稳定性讨论差分方程解的误差在计算过程中的发展问题。稳定性:如果求解差分方程过程中引入的数值误差在以后计算步逐步消失或保持有界,则称此差分方程是稳定的;如果引入的数值误差在以后计算步被逐渐放大,以致物理问题的解被完全破坏,则称此差分方程是不稳定的。,1.直观法(离散摄动法)在某计算步引入误差(离散摄动)后,直接考察在以后各计算步中差分方程对误差发展所起的作用。以FTCS格式为例,讨论其稳定性,:,:,:,:,:,:,:,:,:,2.Von Neumann方法(傅里叶级数法、分离变量法)优点:寻求一般稳定性判据最常用的方法,使用方便 可靠。局限性:只能在常系数的线性初值问题中求稳定的充分必要条件,在实际变系数的非线性问题以及各种不同边界条件的问题中,应用受到限制。,:,:,:,1.1.6 收敛性与稳定性的关系,Lax等价定理,收敛性和稳定性是两个不同的概念,分别属于离散化过程和离散代数方程的求解过程。收敛性分析比稳定性分析更困难,而收敛性与稳定性有密切联系。,Lax等价定理:对于一个适定的线性偏微分方程的初值问题和它的一个具有相容性的差分方程来说,稳定性是收敛性的必要和充分条件。适定的初值问题:解存在、唯一、并且连续依赖于初值。,1.1.7 非线性问题的有限差分法,一般求解方法:1给出所有结点上T的试探值2用试探值计算离散方程中的系数3求解名义上的线性方程组,得到新的T值4用新的T值作为较好的试探值25若T值不再产生大的变化收敛,否则发散,1.1.8 关于对流项的迎风差分(upwind difference scheme),1.迎风差分的基本思想 迎风迎着来流(从上游)获取信息,来构造对流项的离散格式。,2.对流项离散格式的迁移性如果对流项的某种离散格式能使扰动仅沿着流动方向传递,则称此离散格式具有迁移特性。,3.讨论1迁移性是对流项离散格式的一个重要的物理特性,凡是由不具有迁移性的对流项离散格式组成的离散方程,在计算中可能出现解的振荡,因而只是有条件稳定。2虽然对流项的中心差分为二阶精度而迎风差分为一阶精度,但就它们对物理特性的模拟而言,迎风差分要比中心差分更合理。所以在求解实际物理问题时,只注意差分格式的精度是不够的。,3在数值解不出现振荡的范围内,对流项采用中心差分比采用一阶迎风格式得到的解精度更高;但是,当对流作用十分强烈、网格数又受到限制时,采用中心差分会出现解的振荡,而采用一阶迎风格式却始终可以得到物理上看起来合理的解(尽管可能有较大误差)。,4数值计算实践已表明,一阶迎风格式可能使计算结果产生比较严重的误差(数值扩散或假扩散),但从一阶迎风格式发展而来的思想已被用于构造具有二阶或三阶精度的迎风格式。由于一阶迎风格式优良的数值稳定性,它往往用于初步计算,起过渡作用。,

    注意事项

    本文(流动传热燃烧的数值计算.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开