欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    模拟电子技术基础 (2).ppt

    • 资源ID:6302640       资源大小:2.06MB        全文页数:103页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    模拟电子技术基础 (2).ppt

    模拟电子技术基础,主讲:xxx,第一讲,绪 论,1.电子技术的现状与发展趋势,2.电子技术的应用范围,3.本课程与其它专业课的关系,4.电子技术基础学习特点,参考书:,模拟电子技术基础(第四版):清华大学童诗白、华成英主编,2.电子技术基础(模拟部分第四版):华中理工大学康华光主编,1.1 半导体的基本知识1.2 PN结1.3 半导体二极管,第一章 晶体二极管,1.1 半导体的基本知识,根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。半导体的电阻率为10-3109 cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。,1.1.1 本征半导体及其导电性,本征半导体化学成分纯净的半导体晶体。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。它在物理结构上呈单晶体形态。,(1)本征半导体的共价键结构,硅和锗是四价元素,在原子最外层轨道上的四个电子称为价电子。它们分别与周围的四个原子的价电子形成共价键。共价键中的价电子为这些原子所共有,并为它们所束缚,在空间形成排列有序的晶体。,这种结构的立体和平面示意图见图01.01。,(2)电子空穴对,当导体处于热力学温度0K时,导体中没有自由电子。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,而参与导电,成为自由电子。,自由电子产生的同时,在其原来的共价键中就出现了一个空位,原子的电中性被破坏,呈现出正电性,其正电量与电子的负电量相等,人们常称呈现正电性的这个空位为空穴。,这一现象称为本征激发,也称热激发。,可见因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。游离的部分自由电子也可能回到空穴中去,称为复合,如图01.02所示。,本征激发和复合在一定温度下会达到动态平衡。,图01.02 本征激发和复合的过程(动画1-1),(3)空穴的移动,自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,它们的方向相反。只不过空穴的运动是靠相邻共价键中的价电子依次充填空穴来实现的,因此,空穴的导电能力不如自由电子(见图01.03的动画演示)。,(动画1-2),图01.03 空穴在晶格中的移动,1.1.2 杂质半导体,(1)N型半导体(2)P型半导体,在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。掺入的杂质主要是三价或五价元素。掺入杂质后的本征半导体称为杂质半导体。,(1)N型半导体,在本征半导体中掺入五价杂质元素,例如磷,可形成 N型半导体,也称电子型半导体。因五价杂质原子中只有四个价电子能与周围四个半导体原子中的价电子形成共价键,而多余的一个价电子因无共价键束缚而很容易形成自由电子。,在N型半导体中自由电子是多数载流子,它主要由杂质原子提供;空穴是少数载流子,由热激发形成。,提供自由电子的五价杂质原子因自由电子脱离而带正电荷成为正离子,因此,五价杂质原子也被称为施主杂质。N型半导体的结构示意图如图01.04所示。,图01.04 N型半导体结构示意图,(2)P型半导体,本征半导体中掺入三价杂质元素,如硼、镓、铟等形成 P型半导体,也称为空穴型半导体。因三价杂质原子与硅原子形成共价键时,缺少一个价电子而在共价键中留下一个空穴。,P型半导体中空穴是多数载流子,主要由掺杂形成;电子是少数载流子,由热激发形成。,空穴很容易俘获电子,使杂质原子成为负离子。三价杂质 因而也称为受主杂质。P型半导体的结构示意图如图01.05所示。,图01.05 P型半导体的结构示意图,图01.05 P型半导体的结构示意图,1.1.3 杂质对半导体导电性的影响,掺入杂 质对本征半导体的导电性有很大的影响,一些典型的数据如下:,以上三个浓度基本上依次相差106/cm3。,杂质半导体简化模型,1.2 PN结,1.2.1 PN结的形成,1.2.2 PN结的单向导电性,1.2.3 PN结的电容效应,PN结的形成,在一块本征半导体两侧通过扩散不同的杂质,分别形成 N 型半导体和 P 型半导体。此时将在N型半导体和 P 型半导体的结合面上形成如下物理过程:,因浓度差 多子的扩散运动由杂质离子形成空间电荷区,空间电荷区形成 内电场,内电场促使少子漂移,内电场阻止多子扩散,最后多子扩散和少子的漂移达到动态平衡。对于P型半导体和N型半导体结合面,离子薄层形成的空间电荷区称为 P N 结,在空间电荷区,由于缺少多子,所以也称耗尽层。,图01.06 PN结的形成过程,(动画1-3),PN 结形成的过程可参阅图01.06。,PN结的单向导电性,如果外加电压使PN结中:P区的电位高于 N 区的电位,称为加正向电压,简称正偏;,PN结具有单向导电性,若外加电压使电流从 P 区流到 N 区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。,P 区的电位低于 N 区的电位,称为加反向电压,简称反偏。,(1)PN结加正向电压时的导电情况,外加的正向电压有一部分降落在 PN 结区,方向与PN结内电场方向相反,削弱了内电场。内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN 结呈现低阻性。,PN结加正向电压时的导电情况如图01.07,(动画1-4),图01.07 PN结加正向电压时的导电情况,(2)PN结加反向电压时的导电情况,外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场的作用下形成的漂移电流大于扩散电流,可忽略扩散电流,由于漂移电流本身就很小,PN结呈现高阻性。,在一定温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。,PN结加反向电压时的导电情况如图01.08所示。,图 01.08 PN 结加反向电压时的导电情况,PN结外加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。,(动画1-5),图 01.08 PN结加反向电压时的导电情况,1.在杂质半导体中多子的数量与(a.掺杂浓度、b.温度)有关。,2.在杂质半导体中少子的数量与。(a.掺杂浓度、b.温度)有关。,3.当温度升高时,少子的数量。(a.减少、b.不变、c.增多),a,b,c,4.在外加电压的作用下,P 型半导体中的电流主要是,N 型半导体中的电流主要是。(a.电子电流、b.空穴电流),b,a,思考题:,1.2.3 PN结的电容效应,PN结具有一定的电容效应,它由两方面的因素决定。一是势垒电容CB 二是扩散电容CD,(1)势垒电容CB,势垒电容是由空间电荷区离子薄层形成的。当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化,犹如电容的充放电。势垒电容的示意图见图01.09。,图 01.09 势垒电容示意图,扩散电容是由多子扩散后,在PN结的另一侧面积累而形成的。因 PN 结正偏时,由N区扩散到 P 区的电子,与外电源提供的空穴相复合,形成正向电流。刚扩散过来的电子就堆积在 P 区内紧靠PN结的附近,形成一定的多子浓度梯度分布曲线。,(2)扩散电容CD,反之,由P区扩散到N区的空穴,在N区内也形成类似的浓度梯度分布曲线。扩散电容的示意图如图01.10所示。,图 01.10 扩散电容示意图,当外加正向电压不同时,扩散电流即外电路电流的大小也就不同。所以PN结两侧堆积的多子的浓度梯度分布也不相同,这就相当电容的充放电过程。势垒电容和扩散电容均是非线性电容。,半导体元件及其特性,1-1 半导体二极管,1-2 半导体三极管,1-1 半导体二极管,1PN结的形成 在半导体材料(硅、锗)中掺入不同杂质可以分别形成N型和P型两种半导体。N型半导体主要依靠自由电子导电,称自由电子为多数载流子,而空穴数量远少于电子数量,称空穴为少数载流子。P型半导体主要靠空穴导电,称空穴为多数载流子,而自由电子远少于空穴的数量,称自由电子为少数载流子。,PN结的形成与特性,当P型半导体和N型半导体接触以后,由于交界两侧半导体类型不同,存在电子和空穴的浓度差。这样,P 区的空穴向N区扩散,N区的电子向P区扩散,如图 1.1.1(a)所示。由于扩散运动,在P 区和N区的接触面就产生正负离子层。N区失掉电子产生正离子,P区得到电子产生负离子。通常称这个正负离子层为PN结。在结的区一侧带负电,区一侧带正电。结便产生了内电场,内电场的方向从区指向区。内电场对扩散运动起到阻碍作用,电子和空穴的扩散运动随着内电场的加强而逐步减弱,直至停止。在界面处形成稳定的空间电荷区。,2.PN结的特性 1)正向导通 给PN结加正向电压,即P区接正电源,N区接负电源,此时称PN结为正向偏置。这时PN结外加电场与内电场方向相反,当外电场大于内电场时,外加电场抵消内电场,使空间电荷区变窄,有利于多数载流子运动,形成正向电流。外加电场越强,正向电流越大,这意味着PN结的正向电阻变小。,正向导通,反向截止,2)反向截止 给PN结加反向电压,称PN结反向偏置,如图所示。这时外加电场与内电场方向相同,使内电场的作用增强,PN结变厚,多数载流子运动难于进行,有助于少数载流子运动,形成电流IR,少数载流子很少,所以电流很小,接近于零,即PN结反向电阻很大。,综上所述,PN结具有单向导电性,加正向电压时,PN结电阻很小,电流IR较大,是多数载流子的扩散运动形成的;加反向电压时,PN结电阻很大,电流IR很小,是少数载流子运动形成的。,接在二极管P区的引出线称二极管的阳极,接在N区的引出线称二极管的阴极。二极管有许多类型。从工艺上分,有点接触型和面接触型;按用途分,有整流管、检波二极管、稳压二极管、光电二极管和开关二极管等。,二极管的结构和类型,1 二极管伏安特性 理论分析指出,半导体二极管电流I与端电压U之间的关系可表示为 I=IS(-1)此式称为理想二极管电流方程。式中,IS称为反向饱和电流,UT称为温度的电压当量,常温下UT26 mV。实际的二极管伏安特性曲线如图所示。图中,实线对应硅材料二极管,虚线对应锗材料二极管。,二极管的特性及参数,1)正向特性 当二极管承受正向电压小于某一数值时,还不足以克服PN结内电场对多数载流子运动的阻挡作用,这一区段二极管正向电流IF很小,称为死区。死区电压的大小与二极管的材料有关,并受环境温度影响。通常,硅材料二极管的死区电压约为0.5 V,锗材料二极管的死区电压约为0.2V。当正向电压超过死区电压值时,外电场抵消了内电场,正向电流随外加电压的增加而明显增大,二极管正向电阻变得很小。当二极管完全导通后,正向压降基本维持不变,称为二极管正向导通压降UF。一般硅管的UF为0.7V,锗管的UF为0.3V。,2)反向特性 当二极管承受反向电压时,外电场与内电场方向一致,只有少数载流子的漂移运动,形成的漏电流IR极小,一般硅管的IR为几微安以下,锗管IR较大,为几十到几百微安。这时二极管反向截止。当反向电压增大到某一数值时,反向电流将随反向电压的增加而急剧增大,这种现象称二极管反向击穿。击穿时对应的电压称为反向击穿电压。普通二极管发生反向击穿后,造成二极管的永久性损坏,失去单向导电性。,2 二极管的主要参数 二极管参数是反映二极管性能质量的指标。必须根据二极管的参数来合理选用二极管。二极管的主要参数有4项。1)最大整流电流IFM IFM是指二极管长期工作时允许通过的最大正向平均电流值。工作时,管子通过的电流不应超过这个数值,否则将导致管子过热而损坏。,2)最高反向工作电压URM URM是指二极管不击穿所允许加的最高反向电压。超过此值二极管就有被反向击穿的危险。URM通常为反向击穿电压的1/22/3,以确保二极管安全工作。3)最大反向电流IRM IRM是指二极管在常温下承受最高反向工作电压URM时的反向漏电流,一般很小,但其受温度影响较大。当温度升高时,IRM显著增大。,4)最高工作频率fM fM是指保持二极管单向导通性能时,外加电压允许的最高频率。二极管工作频率与PN结的极间电容大小有关,容量越小,工作频率越高。,二极管是电子电路中最常用的半导体器件。利用其单向导电性及导通时正向压降很小的特点,可用来进行整流、检波、钳位、限幅、开关以及元件保护等各项工作。1 整流 所谓整流,就是将交流电变为单方向脉动的直流电。利用二极管的单向导电性可组成单相、三相等各种形式的整流电路。2 钳位 利用二极管正向导通时压降很小的特性,可组成钳位电路。,半导体二极管的应用,若A点UA=0,二极管VD可正向导通,其压降很小,故F点的电位也被钳制在0V左右,即UF0。,3 限幅 利用二极管正向导通后其两端电压很小且基本不变的特性,可以构成各种限幅电路,使输出电压幅度限制在某一电压值以内。,设输入电压ui=10sint(V),Us1=Us2=5V。当-Us2Us1时,VD1处于正向偏置而导通,使输出电压保持在Us1。,当ui-Us1时,VD2处于正向偏置而导通,输出电压保持在-Us2。由于输出电压uo被限制在+Us1与-Us2之间,即|uo|5V,好像将输入信号的高峰和低谷部分削掉一样,因此这种电路又称为削波电路。,4 元件保护 在电子线路中,常用二极管来保护其他元器件免受过高电压的损害。,在开关S接通时,电源E给线圈供电,L中有电流流过,储存了磁场能量。在开关S由接通到断开的瞬时,电流突然中断,L中将产生一个高于电源电压很多倍的自感电动势eL,eL与E叠加作用在开关S的端子上,在S的端子上产生电火花放电,这将影响设备的正常工作,使开关S寿命缩短。接入二极管VD后,eL通过二极管VD产生放电电流i,使L中储存的能量不经过开关S放掉,从而保护了开关S。,1.发光二极管 1)发光二极管的符号及特性 是一种将电能直接转换成光能的固体器件,简称LED。发光二极管和普通二极管相似,也由一个PN结组成。发光二极管在正向导通时,由于空穴和电子的复合而发出能量,发出一定波长的可见光。光的波长不同,颜色也不同。常见的LED有红、绿、黄等颜色。发光二极管的驱动电压低、工作电流小,具有很强的抗振动和抗冲击能力。由于发光二极管体积小、可靠性高、耗电省、寿命长,被广泛用于信号指示等电路中。,特种二极管,2)发光二极管的应用 电源通断指示发光二极管作为电源通断指示通常称为指示灯,在实际应用中给人提供很大的方便。发光二极管的供电电源既可以是直流的也可以是交流的,但必须注意的是,发光二极管是一种电流控制器件,应用中只要保证发光二极管的正向工作电流在所规定的范围之内,它就可以正常发光。数码管是电子技术中应用的主要显示器件,是用发光二极管经过一定的排列组成的。,这是最常用的七段数码显示。要使它显示09的一系列数字只要点亮其内部相应的显示段即可。七段数码显示有共阳极(b)和共阴极(c)之分。数码管的驱动方式有直流驱动和脉冲驱动两种,应用中可任意选择。数码管应用十分广泛,可以说,凡是需要指示或读数的场合,都可采用数码管显示。,2.稳压二极管 硅稳压二极管简称稳压管,是一种特殊的二极管,它与电阻配合具有稳定电压的特点。,1)稳压管的伏安特性 稳压管正向偏压时,其特性和普通二极管一样;反向偏压时,开始一段和二极管一样,当反向电压达到一定数值以后,反向电流突然上升,而且电流在一定范围内增长时,管两端电压只有少许增加,变化很小,具有稳压性能。这种“反向击穿”是可恢复的,只要外电路限流电阻保障电流在限定范围内,就不致引起热击穿而损坏稳压管。,2)稳压管的主要参数 a.稳定电压值UVDZ:稳压管在正常工作时管子的端电压,一般为325V,高的可达200 V。b.稳定电流IVDZ:稳压管正常工作时的参考电流。开始稳压时对应的电流最小,为最小稳压电流IVDZmin;对应额定功耗时的稳压电流为最大稳压电流IVDZmax。c.动态电阻rVDZ:稳压管端电压的变化量UVDZ与对应电流变化量IVDZ之比,即,d.稳定电压的温度系数:当温度变化1时稳压管的稳压值UVDZ的相对变化量。e.稳压管额定功耗PVDZM:保证稳压管安全工作所允许的最大功耗。其大小为 PVDZM=UVDZIVDZmax,3)稳压二极管的应用 UI是不稳定的可变直流电压,希望得到稳定的电压UO,故在两者之间加稳压电路。它由限流电阻R和稳压管VDZ构成,RL是负载电阻。,1-2 半导体三极管,三极管是由两个PN结、3个杂质半导体区域组成的,因杂质半导体有P、N型两种,所以三极管的组成形式有NPN型和PNP型两种。1.三极管的结构及类型 不管是NPN型还是PNP型三极管,都有三个区:基区、发射区、集电区,以及分别从这三个区引出的电极:发射极e、基极b和集电极c;两个PN结分别为发射区与基区之间的发射结和集电区与基区之间的集电结。,三极管的结构及类型,三极管基区很薄,一般仅有1微米至几十微米厚,发射区浓度很高,集电结截面积大于发射结截面积。使用中要注意电源的极性,确保发射结永远加正向偏置电压,三极管才能正常工作。三极管根据基片的材料不同,分为锗管和硅管两大类,目前国内生产的硅管多为NPN型(3D系列),锗管多为PNP型(3A系列);从频率特性分,可分为高频管和低频管;从功率大小分,可分为大功率管、中功率管和小功率管。,2.三极管电流分配和放大作用 实验得出如下结论:IE=IC+IB ICIE 三个电流之间的关系符合基尔霍夫电流定律,IB虽然很小,但对IC有控制作用,IC随IB改变而改变。称为三极管的电流放大系数,它反映三极管的电流放大能力,也可以说电流IB对IC的控制能力。,1)三极管内部载流子的运动规律 三极管电流之间为什么具有这样的关系呢?这可以通过在三极管内部载流子的运动规律来解释。a.发射区向基区发射电子。电源UBB经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子自由电子不断地越过发射结而进入基区,形成发射极电流IE。同时,基区多数载流子也向发射区扩散,但由于基区很薄,可以不考虑这个电流。因此,可以认为三极管发射结电流主要是电子流。,b.基区中的电子进行扩散与复合。电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区,形成集电结电流IC。也有很小一部分电子与基区的空穴复合,形成复合电子流。扩散的电子流与复合电子流的比例决定了三极管的放大能力。,c.集电区收集电子。由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区而形成集电结主电流ICN。另外集电区的少数载流子空穴也会产生漂移运动,流向基区,形成反向饱和电流ICBO,其数值很小,但对温度却非常敏感。,2)三极管的电流分配关系 综合载流子的运动规律,三极管内的电流分配如图所示,图中的箭头表示电流方向。由于三极管基区的杂质浓度很低,且厚度很薄,这就减小了电子和空穴复合的机会,所以从发射区注入到基区的电子只有很小一部分在基区复合掉,绝大部分到达集电区。这就是说构成发射极电流IE的两部分中,IBE部分是很小的,ICE部分所占百分比是大的,若它们的比值用hFE本表示,则有,hFE本表示三极管的电流放大能力,称为本征电流放大系数。它的大小取决于基区中载流子扩散与复合的比例关系,这种比例关系是由管子内部结构决定的,一旦管子制成后,这种比例关系(h FE本值)也就确定了。各极电流满足下列分配关系:IB=IBE-ICBO IC=ICE+ICBO,=h FE本IBE+ICBO=h FE本(IB+ICBO)+CBO=hFE本IB+(1+hFE本)ICBO=hFE本IB+ICEO ICEO=(1+hFE本)I CBO IE=I CE+I BE=(IC-ICBO)+(IB+ICBO)=IC+IB,由三极管内部的载流子运动规律可知,集电极电流IC主要来源于发射极电流IE,而同集电极外电路几乎无关,只要加到集电结上的反向电压能够把从基区扩散到集电结附近的电子吸引到集电区即可。这就是三极管的电流控制作用。三极管能实现放大作用也是以此为基础的,这也是三极同二极管一个质的区别所在。IE的大小是由发射结上的外加正向电压UBE的大小决定的,UBE的变化将引起IE的变化,IE的变化再引起IB和IC的变化,所以,实质上是发射结上的正向电压UBE对各极电流有控制作用。,UBE变化能引起IC变化的现象,本应理解为电压控制,但二者的关系是非线性的,表达起来很不方便,当ICBO(或ICEO)可忽略时,则有ICh FE本IB,表明IC同IB(或IE)有一个比例关系,使用起来很方便,所以通常说IC受IB(或IE)控制,或者说,IC随IB(或IE)成正比变化。,这里还需指出,三极管的结构特点是它具有电流控制作用的内部依据,而发射结正向偏置、集电结反向偏置是它实现电流控制作用的外部条件。这是因为IC受IB(或IE)控制,是在满足上述外部条件下实现的,因此,三极管在作放大运用时的直流供电必须满足这个外部条件。,3)放大作用 在基极回路(b、e间)加入一个待放大的信号电压us;在集电极回路(c、e间)串入一个负载电阻RL,RL两端电压变量为uo。基极接信号称输入端,集电极接负载,称之为输出端,发射极既接信号又接负载,称之为公共端。这种连接方式称为共发射极接法。,1.共射输入特性 1)当UCE=0时的输入特性(图中曲线)当UCE=0时,相当于集电极和发射极间短路,三极管等效成两个二极管并联,其特性类似于二极管的正向特性。,三极管的特性曲线,2)当UCE 1V时的输入特性(图中曲线)当UCE1V时,输入特性曲线右移(相对于UCE=0时的曲线),表明对应同一个UBE值,IB减小了,或者说,要保持IB不变,UBE需增加。这是因为集电结加反向电压,使得扩散到基区的载流子绝大部分被集电结吸引过去而形成集电极电流IC,只有少部分在基区复合,形成基极电流IB,所以IB减小而使曲线右移。对应输入特性曲线某点(例如图的Q点)切线斜率的倒数,称为三极管共射极接法(Q点处)的交流输入电阻,记作rbe,即,2.输出特性曲线 输出特性曲线是指当三极管基极电流IB为常数时,集电极电流IC与集电极、发射极间电压UCE之间的关系,即:IC=f(UCE)|IB=常数输出特性曲线如图所示。,1)截止区 2)放大区 a.对应同一个IB值,|UCE|增加时,IC基本不变(曲线基本与横轴平行)。b.对应同一个UCE值,IB增加,IC显著增加,并且IC的变量IC与IB的变量IB基本为正比关系(曲线簇等间距)。3)饱和区,1.电流放大系数 动态(交流)电流放大系数:当集电极电压UCE为定值时,集电极电流变化量IC与基极电流变化量IB之比,即,静态(直流)电流放大系数:三极管为共发射极接法,在集电极-发射极电压UCE一定的条件下,由基极直流电流IB所引起的集电极直流电流与基极电流之比,称为共发射极静态(直流)电流放大系数,记作,三极管的主要参数,2.极间反向截止电流)发射极开路,集电极基极反向截止电流ICBO。)基极开路,集电极发射极反向截止电流ICEO是当三极管基极开路而集电结反偏和发射结正偏时的集电极电流。,3.极限参数 集电极最大允许电流ICM:当IC超过一定数值时下降,下降到正常值的2/3时所对应的IC值为ICM,当ICICM时,可导致三极管损坏。反向击穿电压U(BR)CEO:基极开路时,集电极、发射极之间最大允许电压为反向击穿电压U(BR)CEO,当UCEU(BR)CEO时,三极管的IC、IE剧增,使三极管击穿。为可靠工作,使用中取,复合三极管是把两个三极管的管脚适当的连接起来使之等效为一个三极管,典型结构如图所示。ic=ic1+ic2=1ib1+2ib2=1ib1+2(1+1)ib1 1ib1+21 ib1=1ib1(1+2)12 i b1,复合三极管,即=说明复合管的电流放大系数近似等于两个管子电流放大系数的乘积。同时有 ICEO=ICEO2+2ICEO1表明复合管具有穿透电流大的缺点。,第二章 基本放大电路,2.1 概述2.2 基本共射放大电路的工作原理2.3 放大电路的分析方法,2.4 静态工作点的稳定,设置Q点的原因,前一节知识的回顾,Q点设置的合理性,晶体管工作在放大区,晶体管实现线性放大,基本共射放大电路的Q点分析,静态Q点通过晶体管的动态电阻rbe影响电压放大倍数、输入电阻等动态参数。,2.4 静态工作点的稳定,1.客观上的不稳定带来.,2.是什么原因使它不稳定?,3.怎么稳定?,4.在稳定的过程中会遇到,Q点的稳定性,对于前面的放大电路(即固定偏置电路)而言,静态工作点由UBE、和ICEO 决定,这三个参数随温度而变化,温度对静态工作点的影响主要体现在这些方面。,因此Q点不稳定会.,Q点与,电压放大倍数、,输入电阻、,输出信号,是否产生失真 有关。,一、首先讨论问题1和问题2,固定偏置电路的Q点是不稳定的。怎么稳定?,很重要的工程思维方式:以“变化”应“变化”从而实现补偿的目的。,为此,需要改进固定偏置电路,,常采用射极分压式偏置电路来稳定静态工作点。,使得当温度升高IC增加时,能够自动减少IB,从而抑制Q点的变化,保持Q点基本稳定。,提示,1 静态分析,(2)稳定的原理,(1)Q点的估算,二、射极分压式偏置电路,B点的电位固定,B,IC,E,2 动态性能分析,发射极电阻的引入带来?,如何解决?,提示,CE,

    注意事项

    本文(模拟电子技术基础 (2).ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开