欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    数学物理方程课件第二章1分离变量法.ppt

    • 资源ID:6295958       资源大小:1.38MB        全文页数:73页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学物理方程课件第二章1分离变量法.ppt

    第二章 分离变量法,一、有界弦的自由振动,二、有限长杆上的热传导,三、拉普拉斯方程的定解问题,四、非齐次方程的解法,五、非齐次边界条件的处理,六、关于二阶常微分方程特征值问题的一些结论,基本思想:首先求出具有变量分离形式且满足边界条件的特解,然后由叠加原理作出这些解的线性组合,最后由其余的定解条件确定叠加系数。,适用范围:波动问题、热传导问题、稳定场问题等,特点:a.物理上由叠加原理作保证,数学上由解的唯一性作保证;b.把偏微分方程化为常微分方程来处理,使问题简单化。,令,带入方程:,令,带入边界条件,1 求两端固定的弦自由振动的规律,一 有界弦的自由振动,特征(固有)值问题:含有待定常数常微分方程在一定条 件下的求解问题,特征(固有)值:使方程有非零解的常数值,特征(固有)函数:和特征值相对应的非零解,分情况讨论:,1),2),3)令,为非零实数,分离变量,求特征值和特征函数,求另一个函数,求通解,确定常数,分离变量法可以求解具有齐次边界条件的齐次偏微分方程。,2 解的性质,x=x0时:,其中:,驻波法,t=t0时:,例1:设有一根长为10个单位的弦,两端固定,初速为零,初位移为,求弦作微小横向振动时的位移。,解:,弦的振动,振幅放大100倍,红色、蓝色、绿色分别为n=1,2,3时的驻波。,解:,例2求下列定解问题,初始条件,若l=1,a=10时的震动。,例3 求下列定解问题,解:,例4 求下列定解问题,令,带入方程:,解:,二 有限长杆上的热传导,令,带入方程:,解:,令,令,带入方程:,令,例5 求下列定解问题,解:,例6 求下列定解问题,解:,若 则u为多少?为什么会出现这样的现象?,思考,若,有界杆上的热传导(杆的两端绝热),分离变量流程图,三 拉普拉斯方程的定解问题,1 直角坐标系下的拉普拉斯问题,解:,例7 求下列定解问题,解:,例8 求下列定解问题,解:,2 圆域内的拉普拉斯问题,欧拉方程,例9 求下列定解问题,解:,欧拉方程,令,例10 求下列定解问题,解:,欧拉方程,令,其它为零,例12 求下列定解问题,解:,欧拉方程,其他为零,例13 求下列定解问题,解:,例13 求下列定解问题,解:,例14 求下列定解问题,解法一:令,解法二:令,常用本征方程 齐次边界条件,

    注意事项

    本文(数学物理方程课件第二章1分离变量法.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开