欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    数学上册《平面图形的密铺》.ppt

    • 资源ID:6295106       资源大小:314.50KB        全文页数:36页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学上册《平面图形的密铺》.ppt

    第15课时 平面图形的密铺,欢迎指导,谢谢!,教材:义务教育课程标准实验教科书(北师大版),一、教材分析二、学情分析三、教学目标和要求四、教法和学法五、教学过程六、板书设计,一、教材分析,平面图形的密铺在学案上是北师大版八年级数学上册第四章第15课时的内容,本节内容为1课时。此内容体现了多边形在现实生活中的应用价值,也是开发和培养学生创造性思维的一个重要渠道。,二、学情分析,(1)知识水平:学生已经具有图形的平移、旋转及多边形的内角和与外角和等知识;(2)能力和方法水平:通过上述知识的复习,学生具备一定的推理能力,也知道特殊一般的思想方法。(3)心理水平:好奇心,表现欲较强。(4)思维水平:认识事物时,经验占主导。本班学生程度参差不齐,有的学生基础扎实,学习习惯好,有的学生基础和学习能力稍差。还需要多鼓励,多帮助。,三、教学目标和要求,(1)知识与技能:通过探索平面图形的密铺,知道任意一个三角形、四边形或正六边形可以密铺,并能运用这几种图形进行简单的密铺设计。(2)过程与方法:经历探索多边形密铺条件的过程,进一步发展学生的合情推理能力。(3)情感与态度:在探索活动中,培养学生的合作交流意识和审美观,使学生进一步体会平面图形在现实生活中的广泛应用。教学重难点 重点是认识三角形、四边形、正六边形是密铺图形 难点是密铺原理的认识。,四、教法和学法,关于教法和学法,通过学习我认为教师应该从关注教师的教转化为高度关注学生的学,因此我在这部分将重点以学案导学谈谈我的教法和学生的学法。采用DJP教学模式,即导学讲解评价。学案导学:先学后教,课前教师讲解导学要求,学生在学案的引导和帮助下,独立阅读教材、自主探索密铺的概念,完成学习准备的内容。学生六人为一组,全班分为九个小组。自主探索、动手操作、合作交流成为学习的主要方式。,五、教学过程 利用学案设计教学过程:分为:学案流程、学案环节应用、学案设计意图三部分。,候课朗读多边形的内角和是(n-2)180度,体现前后知识的联系,一、学习准备1、分组准备多边形纸片:一、二组:正三角形和任意三角形;三、四组:正四边形和任意三角形;五、六组:正六边形和任意四边形;七、八、九组:正五边形和任意四边形(要求:用吹塑纸做,不少于6个,必须是全等的多边形,并且要在任意三角形和任意四边形的顶点处标上数字或字母),课前准备充分,才能保证课堂中的探究过程顺利进行。,2、计算:正三角形的一个内角是,正四边形的一个内角是,正五边形的一个内角是,正六边形的一个内角是,正八边形的一个内角是。,通过课前完成计算,为后续学习奠定基础,也节约时间。,3、欣赏下列拼图,你知道它们是由哪些基本图案拼成的吗?,观察它们有什么共同点?,前3幅图的基本图案显而易见,第4幅图片,体现一种到两种密铺的过渡。,二、解读教材平面图形的密铺:,用形状、大小(完全相同)的(一种)或(几种)平面图形进行拼接,彼此之间(不留空隙)、(不重叠)地铺成一片,这就是平面图形的(密铺),又称平面图形的(镶嵌)。,要让学生自己得出密铺的完整概念还是比较难的,所以设计成填空,从而降低难度。,先从特殊的简单的正多边形开始讨论,符合学生的认知水平。,想一想:在正三角形的一个拼接点处有几个角,这些角分别是几度?它们的和为多少?,正三角形:每个三角形内角为60度,六个和为360度,想一想:正四边形一个拼接点的周围有几个角,这些角分别是几度?它们的和为多少?,正四边形:每个正四边形内角为90度,四个和为360度,想一想:正六边形一个拼接点的周围有几个角,这些角分别是几度?它们的和为多少?,正六边形:每个正六边形内角为120度,三个和为360度,因为用三个五边形会留有空隙,用四个则会重叠,所以正五边形不能密铺。,议一议:你能否归纳出那些正多边形可以进行密铺?你能用学过的数学知识解答吗?,智慧结晶:1、正三角形,正四边形,正六边形能够密铺,而正五边形不能密铺。2、只用一种正多边形密铺的条件是:它的一个内角的倍数是360。,通过小组展示,组内讨论,最后得出结论:,(1)用形状、大小完全相同的任意三角形能否密铺?如果能,观察每个拼接点处有几个角,它们与这种三角形的三个内角有什么关系,它们的和是多少?,活动二:,从活动一到活动二,体现了从特殊到一般的思想方法。,360,结论:任意全等的三角形能密铺,在每个拼接点处有六个角,而这六个角和恰好是这个三角形的内角和的两倍,也就是它们的和为360,且相等的边互相重合.,(2)用同一种任意四边形能否进行密铺呢?如果能,观察每个拼接点处有几个角,它们与这种四边形的四个内角有什么关系,它们的和是多少?,360,结论:任意全等的四边形可以密铺.在每个拼接点处有四个角,而这四个角的和恰好是这个四边形的四个内角的和,它们的和为360,且相等的边互相重合.,1、用同一种三角形、四边形、正六边形可以进行密铺,2、平面图形能密铺的条件是:每个拼接点处的多边形各内角之和是360(简称:密铺原理),小结:,例1、如图,是全等的等腰梯形密铺而成的图形,则这些等腰梯形各个角的度数为,此题是个典型题,考察密铺原理的应用,三、挖掘教材例2、边长相等的正三角形和正六边形能否密铺?,解:因为正三角形的内角是60,正六边形的内角是120,,设一个拼接点处有x个正三角形的内角,y个正六边形的内角,,根据密铺原理,有60 x+120y=360化简得 x+2y=6,因为x,y都是正整数,所以x=2,y=2或x=4,y=1,即在一个拼接点处有2个正三角形和2个正六边形,或者4个正三角形和1个正六边形,本题体现了方程思想的优越性,即时练习,1、边长相等的正方形和正三角形能否密铺?,即时练习1属于例1的变式,让学生熟练掌握此类题的做法。,四、反思小结:1、本节内容运用了哪些前面学的知识?2、反思你完成本节内容的经验、收获。,五、【达标检测】1、用下列正多边形木板铺地面,要求顶点重合,且木板之间不留空隙,现有三角形 四边形 五边形 六边形 八边形,则符合条件的有(填序号)2、已知一个图案,在某个顶点处由三个边长相等的正多边形密铺而成,其中有两个正八边形,那么另外一个是()A正三角形 B正方形 C正五边形 D正六边形,3、边长相等的正三角形、正方形、正六边形,如果同时用三种图形进行拼图,能密铺吗?如果不能,请说明理由;如果能,每个拼接点处有多少个正三角形,多少个正方形?,达标检测习题的安排遵循由简到难,题量适中的原则,让所有学生都能参与其中。,再,见,

    注意事项

    本文(数学上册《平面图形的密铺》.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开