数字信号处理第三章4离散傅里叶变换的性质.ppt
2023/10/14,课件,1,四、离散傅里叶变换的性质,DFT正变换和反变换:,2023/10/14,课件,2,1、线性:,这里,序列长度及DFT点数均为N若不等,分别为N1,N2,则需补零使两序列长度相等,均为N,且,若,则,2023/10/14,课件,3,2、序列的圆周移位,定义:,2023/10/14,课件,4,2023/10/14,课件,5,有限长序列的圆周移位导致频谱线性相移,而对频谱幅度无影响。,2023/10/14,课件,6,调制特性:,时域序列的调制等效于频域的圆周移位,2023/10/14,课件,7,2023/10/14,课件,8,3、共轭对称性,2023/10/14,课件,9,2023/10/14,课件,10,其中:,共轭反对称分量:,共轭对称分量:,任意周期序列:,2023/10/14,课件,11,定义:,则任意有限长序列:,圆周共轭反对称序列:,圆周共轭对称序列:,2023/10/14,课件,12,圆周共轭对称序列满足:,2023/10/14,课件,13,2023/10/14,课件,14,2023/10/14,课件,15,圆周共轭反对称序列满足:,2023/10/14,课件,16,同理:,其中:,2023/10/14,课件,17,序列 DFT,共轭对称性,2023/10/14,课件,18,序列 DFT,实数序列的共轭对称性,2023/10/14,课件,19,纯虚序列的共轭对称性,序列 DFT,2023/10/14,课件,20,例:设x1(n)和x2(n)都是N点的实数序列,试用一次N点DFT运算来计算它们各自的DFT:,2023/10/14,课件,21,2023/10/14,课件,22,2023/10/14,课件,23,4、复共轭序列,2023/10/14,课件,24,2023/10/14,课件,25,5、DFT形式下的Parseval定理,2023/10/14,课件,26,2023/10/14,课件,27,6、圆周卷积和,若,则,2023/10/14,课件,28,2023/10/14,课件,29,圆周卷积过程:1)补零2)周期延拓3)翻褶,取主值序列4)圆周移位5)相乘相加,N,N,N,2023/10/14,课件,30,2023/10/14,课件,31,2023/10/14,课件,32,2023/10/14,课件,33,同样,利用对称性,若,则,2023/10/14,课件,34,7、有限长序列的线性卷积与圆周卷积,线性卷积:,2023/10/14,课件,35,讨论圆周卷积和线性卷积之间的关系:,对x1(n)和x2(n)补零,使其长度均为N点;,对x2(n)周期延拓:,圆周卷积:,2023/10/14,课件,36,N,2023/10/14,课件,37,2023/10/14,课件,38,2023/10/14,课件,39,小结:线性卷积求解方法,时域直接求解,z变换法,DFT法,2023/10/14,课件,40,8、线性相关与圆周相关,线性相关:,自相关函数:,2023/10/14,课件,41,相关函数不满足交换率:,2023/10/14,课件,42,相关函数的z变换:,2023/10/14,课件,43,相关函数的频谱:,2023/10/14,课件,44,圆周相关定理,2023/10/14,课件,45,2023/10/14,课件,46,当 时,圆周相关可完全代表线性相关,类似于线性卷积与圆周卷积之间的关系,