欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    教学课件:第七章-平面直角坐标系复习课.ppt

    • 资源ID:6289995       资源大小:360KB        全文页数:30页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    教学课件:第七章-平面直角坐标系复习课.ppt

    第七章 平面直角坐标系复习,平面直角坐标系,回顾本章知识结构:,概念及有关知识,坐标方法的应用,有序数对(a,b),平面直角坐标系及画法(坐标、x轴和y轴、象限),平面上的点,点的坐标,表示地理位置,表示平移(点的平移、图形的平移),一一对应,平面直角坐标系的意义及坐标平面的构成:平面内两条互相_并且原点_的_,组成平面直角坐标系。其中,水平的数轴称为_或_,习惯上取_为正方向;竖直的数轴称为_或_,取_方向为正方向;两坐标轴的交点叫做平面直角坐标系的_。直角坐标系所在的_叫做坐标平面。,有了平面直角坐标系,平面内的点就可以用一对_来表示。坐标平面内的任意一点M,都有唯一的 一对有序数对(x,y)与它对应;任意一对有序数对(x,y),在坐标平面内都有唯一的一个点M与它对应。,坐标平面内的点与有序数对是一一对应关系:,(1):怎样由点找坐标?,(2):怎样由坐标找点?,有序数对,x,O,1,2,3,-1,-2,-3,1,2,-1,-2,-3,y,A,找A点的坐标?,记作A(2,1),(2):由坐标找点,找点B(3,-2)表示的点?,B,(1):由点找坐标,方法:先在x轴和y轴上分别找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,两条垂线的交点就是该坐标对应的点。,方法:分别过已知点向y轴与x轴作垂线,垂足在数轴上对应的数就是这个点的横坐标与纵坐标。,坐标平面内,一般位置的点的的坐标的符号特征:(请用“”、“”、“0”分别填写),(1)点的坐标是(,),则点在第 象限;,四,一或三,(3)若点(x,y)的坐标满足 xy,且在x轴上方,则点在第 象限;,二,巩固练习:由坐标找象限。,温馨提示:判断点的位置,关键抓住象限内点的 坐标的符号特征.,(2)若点(x,y)的坐标满足xy,则点在第 象限;,(4)若点A的坐标为(a2+1,-2b2),则点A在第_象限.,四,巩固练习:坐标轴上点的坐标,(1)点P(m+2,m-1)在x轴上,则点P的坐标是.,(3,0),(2)点P(m+2,m-1)在y轴上,则点P的坐标是.,(0,-3),(3)点P(x,y)满足 xy=0,则点P在.,x 轴上 或 y 轴上,注意:1.x轴上的点的纵坐标为0,表示为(x,0),2.y轴上的点的横坐标为0,表示为(0,y)。,原点(0,0)既在x轴上,又在y轴上。,特殊位置的点的坐标特点:(1)第一、三象限角平分线上的点:横 纵坐标。第二、四象限角平分线上的点:横纵坐标。(2)与x轴平行(或与y轴垂直)的直线上的点:坐标都相同。与y轴平行(或与x轴垂直)的直线上的点:坐标都相同。,相同,互为相反数,横,纵,中考链接:(象限角平分线上的点),(2).已知点A(2a+1,2+a)在第二象限的平分线上,试求A的坐标。,(1).已知点A(2,y),点B(x,5),点A、B在一、三象限的角平分线上,则x=_,y=_;,5,2,A(-1,,1),中考链接:与坐标轴平行的直线上的点,(1).已知点A(m,-2),点B(3,m-1),且直线ABx轴,则m的值为。,-,(2).已知点A(m,-2)、点B(3,m-1),且直线ABy轴,则m的值为。,3,(1).点(x,y)到 x 轴的距离是,(2).点(x,y)到 y 轴的距离是,点到坐标轴的距离,(1).若点的坐标是(-3,5),则它到x轴的距离是,到y轴的距离是,(2)点到x轴、y轴的距离分别是,,则点的坐标可能为.,(1,2)、(-1,2)、(-1,-2)、(1,-2).,巩固练习:,6、利用平面直角坐标系绘制某一区域的各点分布情况的平面图包括以下过程:(1)建立适当的坐标系,即选择一个 为原点,确定x轴、y轴的;(注重寻找最佳位置)(2)根据具体问题确定,选择适当的位置标出比例尺和在数轴上标出单位长度;(3)在坐标平面内画出各点,写出各点的 和各个地点的。,注意:坐标系的位置不同(即原点不同)或单位长度不同,各点在坐标系中的坐标也不同。,适当的参照点,正方向,单位长度,坐标,名称,.,.,.,.,.,北,哲商小学,崇和门,临海中学,中心小学,台州医院,O,你能确定图中的各个位置吗?,想一想!,7、在平面直角坐标系中,将点(x,y)向右 平移a个单位长度,可以得到对应点.将点(x,y)向上 平移b个单位长度,可以得到对应点,(或向左),(或(x-a,y),(或(x,y-b),(或向下),(x+a,y),(x,y+b),返回,可以简单地理解为:左、右平移_坐标不变,_坐标变,变化规律是_减_加,上下平移_坐标不变,_坐标变,变化规律是_减 _加。例如:当P(x,y)向右平移a个单位长度,再向上平移b个单位长度后坐标为。,(1),0,1,2,3,4,-,1,-,2,-,3,-,4,1,2,-,1,-,2,-,3,x,y,1,2,3,4,-,1,-,2,-,3,-,4,1,2,-,1,-,2,-,3,x,y,(3),0,(2),小,结,(1).图(2)、图(3)中的三角形是由图(1)中的三角形经过怎样的平移的得到的?,(2).图(2)图(3)中直角三角形的顶点坐标与图(1)比较分别经历了怎样的变化?,回答:,看谁反应快?,1、在平面直角坐标系中,有一点P(-,),若将P:,(1)向左平移2个单位长度,所得点的坐标为_;(2)向右平移3个单位长度,所得点的坐标为_;(3)向下平移4个单位长度,所得点的坐标为_;(4)先向右平移5个单位长度,再向上平移3个单位长度,所得坐标为_。,考考你,考考你,比一比,看谁反应快?,2、如果A,B的坐标分别为A(-4,5),B(-4,2),将点A向_平移_个单位长度得到点B;将点B向_平移_个单位长度得到点A。,3、如果P、Q的坐标分别为P(-3,-5),Q(2,-5),,将点P向_平移_个单位长度得到点Q;将点Q向_平移_个单位长度得到点P。,4、点P(x,y)在第四象限,且|x|=3,|y|=2,则P点的坐标是。,5、点P(a-1,a2-9)在x轴负半轴上,则P点坐标是。,6、点(,)到x轴的距离为;点(-,)到y轴的距离为;点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是。,(3,-2),(-4,0),3个单位,4个单位,(-3,-1),(0,5)或(0,-5),比一比,看谁反应快?,考考你,y,A,B,C,8.已知,如右图ABC 三个顶点的坐标分别是A(1,4)、B(-4,0)、C(2,0).(1)、将ABC向左平移三个单位后,点A、B、C的坐标分别变为_,_,.(2)、将ABC向下平移三个单位后,点A、B、C的坐标分别变为_,_,.,(-2,4),(-7,0),(-1,0),(-4,-3),(1,1),(2,-3),O,(1,4),(-4,0),(2,0),考考你,9、如图所示的象棋盘上,若帅位于点(1,2)上,相位于点(3,2)上,则炮位于点()。A(1,1)B(1,2)C(2,1)D(2,2),C,考考你,比一比,看谁反应快?,平面直角坐标系内几何图形的面积,例1 如图1,ABC的三个顶点的坐标分别是A(2,3),B(4,0),C(-2,0)求ABC的面积,例1 如图1,ABC的三个顶点的坐标分别是A(2,3),B(4,0),C(-2,0)求ABC的面积,例2 如图,平面直角坐标系中,已知点A(-3,-2),B(0,3),C(-3,2)求ABC的面积,例2 如图,平面直角坐标系中,已知点A(-3,-2),B(0,3),C(-3,2)求ABC的面积,例3 如图3,平面直角坐标系中,已知ABC三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3)求ABC的面积,例3 如图3,平面直角坐标系中,已知ABC三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3)求ABC的面积,例4 如图,四边形ABCD的四个顶点的坐标分别是A(4,2),B(4,-2),C(0,-4),D(0,1)求四边形ABCD的面积,例4 如图,四边形ABCD的四个顶点的坐标分别是A(4,2),B(4,-2),C(0,-4),D(0,1)求四边形ABCD的面积,

    注意事项

    本文(教学课件:第七章-平面直角坐标系复习课.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开