欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    教学课件第二节可分离变量微分方程.ppt

    • 资源ID:6288509       资源大小:1MB        全文页数:43页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    教学课件第二节可分离变量微分方程.ppt

    一、变量可分离方程,如果一阶微分方程可以化为下列形式:,则称原方程为变量可分离的方程。,运用积分方法即可求得变量可分离方程的通解:,其中C 为积分后出现的任意常数。,第二节、可分离变量微分方程,解,原方程即,对上式两边积分,得原方程的通解,解,对上式两边积分,得原方程的通解,隐函数形式,经初等运算可得到原方程的通解为,你认为做完了没有?,原方程的解为,解,两边同时积分,得,故所求通解为,你认为还需要讨论吗?为什么?,解,原方程即,两边积分,得,故通解为,曲线族的包络。,成正比,求,解:根据牛顿第二定律列方程,初始条件为,对方程分离变量,然后积分:,得,利用初始条件,得,代入上式后化简,得特解,并设降落伞离开跳伞塔时(t=0)速度为0,设降落伞从跳伞塔下落后所受空气阻力与速度,降落伞下落速度与时间的函数关系.,t 足够大时,二、齐次方程,变量代换,代入原方程,得,注意:须将u代回.,解,于是,原方程化为,两边积分,得,即,例7,解,是齐次方程,例8,解,可得 OMA=OAM=,例 在制造探照灯反射镜面时,解:设光源在坐标原点,则反射镜面由曲线,绕 x 轴旋转而成.,过曲线上任意点 M(x,y)作切线 M T,由光的反射定律:,入射角=反射角,取x 轴平行于光线反射方向,从而 AO=OM,要求点光源的光线反,射出去有良好的方向性,试求反射镜面的形状.,而 AO,于是得微分方程:,利用曲线的对称性,不妨设 y 0,积分得,故有,得,(抛物线),故反射镜面为旋转抛物面.,于是方程化为,(齐次方程),顶到底的距离为 h,说明:,则将,这时旋转曲面方程为,若已知反射镜面的底面直径为 d,代入通解表达式得,三、可化为齐次方程的方程,变量代换,变量代换,三、可化为齐次方程的方程,变量代换,变量代换,解,于是,原方程变为,联立方程组,解之,得,两边积分,得,即,变量代换,变量代换,变量分离,常数变易,变量代换,四、一阶线性微分方程,形如,的方程称为一阶线性微分方程。,方程称为一阶齐线性方程。,方程称为一阶非齐线性方程。,习惯上,称,为方程,所对应的齐方程。,一阶齐线性方程的解,运用分离变量法,得,两边积分,得,故,的解存在,且唯一,其通解为,解,故该一阶齐线性方程的通解为,套公式!,解,先求此一阶齐线性方程的通解:,故该初值问题的解为,变量代换,变量代换,变量分离,常数变易,变量代换,一阶非齐线性方程的解,比较两个方程:,请问,你有什么想法?,请问,你有什么想法?,行吗?!,故,即,上式两边积分,求出待定函数,齐次方程通解,非齐次方程特解,即,解,所以,方程的通解为,解,原方程可以改写为,这是一个以 y 为自变量的一阶非齐线性方程,其中,故原方程的通解为,解,例10,通解为,解,例12,两边求导,得,通解为,于是,变量代换,变量代换,变量分离,常数变易,变量代换,五、伯努利方程,形如,的方程称为伯努利方程。,代入伯努利方程后,可将其化为一阶线性微分方程,于是,原方程的通解为,解,故,从而,原方程的通解为,变量代换,变量代换,变量分离,常数变易,变量代换,变量代换,变量代换,变量分离,常数变易,变量代换,解,原方程即,于是,原方程化为,运用分离变量法,解得,故原方程的通解为,

    注意事项

    本文(教学课件第二节可分离变量微分方程.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开