欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    微分方程和差分方程简介.ppt

    • 资源ID:6284212       资源大小:1.63MB        全文页数:95页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    微分方程和差分方程简介.ppt

    微分方程与差分方程简介 我们知道,函数是研究客观事物运动规律的重要工具,找出函数关系,在实践中具有重要意义。可在许多实际问题中,我们常常不能直接给出所需要的函数关系,但我们能给出含有所求函数的导数(或微分)或差分(即增量)的方程,这样的方程称为微分方程或差分方程.,动态模型,描述对象特征随时间(空间)的演变过程,分析对象特征的变化规律,预报对象特征的未来性态,根据函数及其变化率之间的关系确定函数,微分方程建模,根据建模目的和问题分析作出简化假设,按照内在规律或用类比法建立微分方程,一、微分方程的基本概念 含有未知函数的导数或微分的方程,称为微分方程.未知函数为一元函数的微分方程,叫常微分方程.未知函数为多元函数的微分方程,叫做偏微分方程.这里我们只讨论常微分方程,简称为微分方程,例如,解:满足等式的函数特解:在特定初始值条件下的解通解:如果微分方程的解中含有任意常数,且相互独立的任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解,二、常见的微分方程的类型及其解法:1.一阶微分方程,常用的解法:分离变量法,以后为了方便起见,我们可把,记住结果中的常数C可正可负。显然y=0也是方程的解,它包含在通解之中,只要取C=0即可。,2.一阶线性微分方程,解法:常数变易法。得到通解,直接利用非齐次方程的通解公式,得,3.二阶常系数线性微分方程,的微分方程称为二阶常系数线性微分方程。,解法:齐次方程的通解+原方程的特解=原方程的通解,二阶非齐次常系数微分方程,相关的参考书:常微分方程.高等教育出版社.数学建模与数学实验.赵静,但琦.高等教育出版社数学建模方法及其应用.韩中庚.高等教育出版社,三、利用Matlab求微分方程的解析解,结 果:u=tg(t-c),解 输入命令:y=dsolve(D2y+4*Dy+29*y=0,y(0)=0,Dy(0)=15,x),结 果 为:y=3e-2xsin(5x),解 输入命令:x,y,z=dsolve(Dx=2*x-3*y+3*z,Dy=4*x-5*y+3*z,Dz=4*x-4*y+2*z,t);x=simple(x)%将x化简 y=simple(y)z=simple(z),结 果 为:x=(c1-c2+c3+c2e-3t-c3e-3t)e2t y=-c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2t z=(-c1e-4t+c2e-4t+c1-c2+c3)e2t,返 回,四、微分方程的数值解,(一)常微分方程数值解的定义,在生产和科研中所处理的微分方程往往很复杂且大多得不出一般解。而在实际上对初值问题,一般是要求得到解在若干个点上满足规定精确度的近似值,或者得到一个满足精确度要求的便于计算的表达式。,因此,研究常微分方程的数值解法是十分必要的。,返 回,(二)建立数值解法的一些途径,1、用差商代替导数,若步长h较小,则有,故有公式:,此即欧拉法。,2、使用数值积分,对方程y=f(x,y),两边由xi到xi+1积分,并利用梯形公式,有:,实际应用时,与欧拉公式结合使用:,此即改进的欧拉法。,故有公式:,3、使用泰勒公式,以此方法为基础,有龙格-库塔(Runge Kutta)法、线性多步法等方法。,4、数值公式的精度,当一个数值公式的截断误差可表示为O(hk+1)时(k为正整数,h为步长),称它是一个k阶公式。,k越大,则数值公式的精度越高。,欧拉法是一阶公式,改进的欧拉法是二阶公式。龙格-库塔法有二阶公式和四阶公式。线性多步法有四阶阿达姆斯外插公式和内插公式。,返 回,(三)可以用Matlab软件求常微分方程的数值解,t,x=solver(f,ts,x0,options),Exapmle:人口增长模型,i.指数增长模型(Malthus模型),ii.阻滞增长模型(Logistic模型、Verhulst模型),传染病模型,问题,描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮到来的时刻,预防传染病蔓延的手段,按照传播过程的一般规律,用机理分析方法建立模型,已感染人数(病人)i(t),每个病人每天有效接触(足以使人致病)人数为,模型1,假设,若有效接触的是病人,则不能使病人数增加,建模,?,模型2,区分已感染者(病人)和未感染者(健康人),假设,1)总人数N不变,病人和健康 人的 比例分别为,2)每个病人每天有效接触人数为,且使接触的健康人致病,建模,日接触率,SI 模型,模型2,tm传染病高潮到来时刻,(日接触率)tm,病人可以治愈!,?,t=tm,di/dt 最大,模型3,传染病无免疫性病人治愈成为健康人,健康人可再次被感染,增加假设,SIS 模型,3)病人每天治愈的比例为,日治愈率,建模,日接触率,1/感染期,一个感染期内每个病人的有效接触人数,称为接触数。,模型3,接触数=1 阈值,感染期内有效接触感染的健康者人数不超过病人数,模型2(SI模型)可以看作模型3(SIS模型)的特例,模型4,传染病有免疫性病人治愈后即移出感染系统,称移出者,SIR模型,假设,1)总人数N不变,病人、健康人和移出者的比例分别为,2)病人的日接触率,日治愈率,接触数=/,建模,需建立 的两个方程,模型4,SIR模型,模型4,SIR模型,相轨线 的定义域,在D内作相轨线 的图形,进行分析,模型4,SIR模型,相轨线 及其分析,s(t)单调减相轨线的方向,P1:s01/i(t)先升后降至0,P2:s01/i(t)单调降至0,1/阈值,模型4,SIR模型,预防传染病蔓延的手段,(日接触率)卫生水平,(日治愈率)医疗水平,传染病不蔓延的条件s01/,的估计,降低 s0,提高 r0,提高阈值 1/,五、微分方程稳定性分析,用微分方程方法建立的动态模型问题 模型分析 中的一个 重要问题是:当时间充分长后,动态过程的 变化趋势 是什么?,微分方程模型中,方程(组)+初始条件 解,初始条件的作用在于确定解,它的微小变化会产生不同的 解,换言之,对解的发展性态变化,往往具有影响作用.,问题是这种对解的发展性态的影响作用是 长期存在 的,还是当时间充分大以后,影响作用会“消逝”?,(1)微分方程模型的稳定性及其实际意义,有时候,初始条件的微小变化会导致解的性态随时间变 大后,产生显著的差异,这时称 系统是不稳定 的;,有时候,初始条件变化导致解的性态差异会随时间变大 后而消失,这时称该 系统是稳定 的.,在实际问题中,初始状态不能精确地而只能近似地确定,所以稳定性问题的研究对于用微分方程方法建立的模型 具有十分重要的实际意义。,也就是说,在具有稳定性特征的微分方程模型中,长远 来看,最终发展结果与精确的初始状态究竟如何,两者 之间没有多大关系,初始状态刻画得精确不精确是无关 紧要的。,微分方程稳定性理论 可以使我们在很多情况下不求解 方程便可直接得到微分方程模型描绘的系统是 稳定 或 不稳定 的结论。,研究者对于微分方程稳定性理论的研究兴趣往往大于 该方程解有无解析表达式的研究兴趣。,在数学建模竞赛活动中,很多问题中涉及到的微分方 程是一类称为 自治系统 的方程。,自治方程 是指方程中不显含自变量 t 的微分方程,例如,自治方程 中的解随时间不断变大如有稳定变化趋势,则这个解的 最终趋势值 只能是该方程的 平衡点。,的 平衡点 是指代数方程,的根(可能不止一个根);,的 平衡点 是指代数方程组,的解(可能不止一组解)。,如果存在某个邻域,使微分方程的解 x(t)从这个邻域 内的某个点 x(0)出发,满足:,则称微分方程 的 平衡点 是 稳定 的;,如果存在某个邻域,使微分方程的解 x(t),y(t)从这个邻域内的某个点 x(0),y(0)出发,满足:,则称微分方程 的 平衡点 是 稳定 的。,上述 一阶自治方程 和 二阶自治方程组 解的 稳定性理论 结果可简介如下:,非线性方程(一个方程)情况,形式:x(t)=f(x(t),平衡点:解 f(x)=0,得 x=x0.注意:有时该方程的 根不止一个.,稳定意义:当 t 时,如 x x0,则称 x0 是稳定的 平衡点;否则称 x0 是不稳定平衡点.,由此,当 f(x0)0 时,x x0;当 f(x0)0 时,x+.,(c)一阶非线性问题的稳定性结论:根据有关数学理论,一阶非线性问题的稳定性在非临界情况下,与一阶 线性问题结论完全相同.,.,研究方法:(a)作 f(x)的线性替代(利用一元函数的泰勒展开式):f(x)f(x0)(x-x0)+f(x0)=f(x0)(x-x0);,(b)线性问题研究:求解 x=f(x0)(x x0),解得,非线性方程(两个方程)组情况,平衡点:解 f(x,y)=0,得 x=x 0 g(x,y)=0,y=y 0.,y(t)=g(x(t),y(t),形式:x(t)=f(x(t),y(t),稳定意义:当 t+时,如 x x0,y y0,则称(x0,y0)是稳定的平衡点;否则称(x0,y0)是不稳定平衡点.,上面的方程组有时可能不止一组解.,研究方法:作 f(x,y)与 g(x,y)的线性替代(利用二元函数 的泰勒展开式):,f(x,y)fx(x0,y0)(x-x0)+f y(x0,y0)(y-y0);g(x,y)g x(x0,y0)(x-x0)+g y(x0,y0)(y-y0).,(b)线性问题研究:记 a1=f x(x0,y0),a2=f y(x0,y0),b1=g x(x0,y0),b2=g y(x0,y0),p=-(a1+b2),q=a1 b2-a2 b1,并无妨设 x0=0,y0=0;,求解,其中 1,2 为特征方程 r 2+p r+q=0 的两根.,这里 1+2=-p,1 2=q,或写为,(1)当 p 0,q 0 时,如果 p2 4q 0,由 1+2=-p,1 2=q,推得 1 与 2 均为负数,,故当 t+时,e 1 t 与 e 2 t 均趋于零,系统稳定;,如果 p2 4q 0,由 1+2=-p,k=i 中 为负数(k=1,2),,故当 t+时,ek t=et(sint cost)(k=1,2)也均趋于零,系统仍为稳定的;,(2)当 p 0 时,如果 p2 4q 0,由 1+2=-p,可推出 1 与 2 中至少有一个为正数,,故当 t+时,e1 t 与 e2 t 中至少有一个 趋于+,系统不稳定;,如果 p2 4q 0,仍由 1+2=-p,可推出 k=i(k=1,2)中 为正数,,故当 t+时,ek t=et(sint cost)(k=1,2)趋于+,仍可推出 系统不稳定。,(3)当 q 0 时,此时必定有 p2 4q 0,,此时 系统也必不稳定。,由 1 2=q,可推出 1 与 2 中至少有一个为 正数,,故当 t+时,e1 t 与 e2 t 中至少有一个趋于+,,当 p 0,q 0 时,相应的平衡点是稳定的;,当 p 0 或当 q 0 时,相应的平衡点是不稳定的。,综述之,在线性方程组非临界(p 0)情况中,(C)非线性问题的 稳定性结论:,(i)若相应的线性问题是 稳定 的,则对应非线性问题也 是 稳定 的;,(ii)若相应的线性问题是 不稳定 的,则对应非线性问题 也是 不稳定 的.,在非临界情况下(p 0),,稳定性模型,对象仍是动态过程,而建模目的是研究时间充分长以后过程的变化趋势 平衡状态是否稳定。,不求解微分方程,而是用微分方程稳定性理论研究平衡状态的稳定性。,捕鱼业的持续收获,再生资源(渔业、林业等)与非再生资源(矿业等),再生资源应适度开发在持续稳产前提下实现最大产量或最佳效益。,问题及 分析,在捕捞量稳定的条件下,如何控制捕捞使产量最大或效益最佳。,如果使捕捞量等于自然增长量,渔场鱼量将保持不变,则捕捞量稳定。,背景,产量模型,假设,无捕捞时鱼的自然增长服从 Logistic规律,单位时间捕捞量与渔场鱼量成正比,建模,捕捞情况下渔场鱼量满足,不需要求解x(t),只需知道x(t)稳定的条件,r固有增长率,N最大鱼量,h(x)=Ex,E捕捞强度,x(t)渔场鱼量,一阶微分方程的平衡点及其稳定性,一阶非线性(自治)方程,F(x)=0的根x0 微分方程的平衡点,不求x(t),判断x0稳定性的方法直接法,(1)的近似线性方程,产量模型,稳定性判断,x0 稳定,可得到稳定产量,x1 稳定,渔场干枯,E捕捞强度,r固有增长率,产量模型,在捕捞量稳定的条件下,控制捕捞强度使产量最大,图解法,P的横坐标 x0平衡点,P的纵坐标 h产量,产量最大,控制渔场鱼量为最大鱼量的一半,效益模型,假设,鱼销售价格p,单位捕捞强度费用c,单位时间利润,在捕捞量稳定的条件下,控制捕捞强度使效益最大.,求E使R(E)最大,渔场鱼量,收入 T=ph(x)=pEx,支出 S=cE,种群的相互竞争,一个自然环境中有两个种群生存,它们之间的关系:相互竞争;相互依存;弱肉强食。,当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。,建立数学模型描述两个种群相互竞争的过程,分析产生这种结局的条件。,模型假设,有甲乙两个种群,它们独自生存时数量变化均服从Logistic规律;,两种群在一起生存时,乙对甲增长的阻滞作用与乙的数量成正比;甲对乙有同样的作用。,对于消耗甲的资源而言,乙(相对于N2)是甲(相对于N1)的 1 倍。,模型,模型分析,(平衡点及其稳定性),模型,判断P0(x10,x20)稳定性的方法直接法,(1)的近似线性方程,仅当1,2 1时,P3才有意义,模型,平衡点稳定性分析,平衡点 Pi 稳定条件:p 0 且 q 0,种群竞争模型的平衡点及稳定性,不稳定,21,11,P1,P2 是一个种群存活而另一灭绝的平衡点,P3 是两种群共存的平衡点,11,21,P1稳定的条件 11?,11,21,稳定条件,结果解释,对于消耗甲的资源而言,乙(相对于N2)是甲(相对于N1)的1 倍。,P1稳定的条件:11,21 甲的竞争力强,甲达到最大容量,乙灭绝,P2稳定的条件:11,21,P3稳定的条件:11,21,通常1 1/2,P3稳定条件不满足,其他的微分方程模型,经济增长模型正规战与游击战药物在体内的分布与排除香烟过滤嘴的作用人口预测和控制烟雾的扩散与消失万有引力定律的发现,其他的稳定性模型,军备竞赛种群的相互依存种群的弱肉强食参考文献:姜启源.数学模型,六、差分方程建模,处理动态的离散型的问题,处理对象虽然涉及的变量(如时间)是连续的,但是从建模的目的考虑,把连续变量离散化更为合适,将连续变量作离散化处理,从而将连续模型(微分方程)化为离散型(差分方程)问题,对于k阶差分方程,F(n;xn,xn+1,xn+k)=0(3-6),若有xn=x(n),满足,F(n;x(n),x(n+1),x(n+k)=0,则称xn=x(n)是差分方程(3-6)的解,包含个任意常数的解称为(3-6)的通解,x0,x1,xk-1为已知时称为(3-6)的初始条件,通解中的任意常数都由初始条件确定后的解称为(3-6)的特解.,若x0,x1,xk-1已知,则形如xn+k=g(n;xn,xn+1,xn+k-1)的差分方程的解可以在计算机上实现.,若有常数a是差分方程(3-6)的解,即,F(n;a,a,a)=0,则称 a是差分方程(3-6)的平衡点.又对差分方程(3-6)的任意由初始条件确定的解 xn=x(n)都有xna(n),则称这个平衡点a是稳定的.一阶常系数线性差分方程 xn+1+axn=b,(其中a,b为常数,且a-1,0)的通解为xn=C(-a)n+b/(a+1)易知b/(a+1)是其平衡点,由上式知,当且仅当|a|1时,b/(a+1)是稳定的平衡点.,二阶常系数线性差分方程xn+2+axn+1+bxn=r,其中a,b,r为常数.,当r=0时,它有一特解x*=0;当r 0,且a+b+1 0时,它有一特解x*=r/(a+b+1).不管是哪种情形,x*是其平衡点.设其特征方程2+a+b=0的两个根分别为=1,=2.,当1,2是两个不同实根时,二阶常系数线性差分方程的通解为xn=x*+C1(1)n+C2(2)n;当1,2=是两个相同实根时,二阶常系数线性差分方程的通解为xn=x*+(C1+C2 n)n;当1,2=(cos+i sin)是一对共轭复根时,二阶常系数线性差分方程的通解为xn=x*+n(C1cosn+C2sinn).易知,当且仅当特征方程的任一特征根|i|1时,平衡点x*是稳定的.,则,对于一阶非线性差分方程xn+1=f(xn),其平衡点x*由代数方程x=f(x)解出.为分析平衡点x*的稳定性,将上述差分方程近似为一阶常系数线性差分方程,Application:常微分方程可化为差分方程,用导数近似式替代导数或者说用适当近似式替代含有导数的表达式,可以得到这些近似值满足的代数方程-差分方程,以二阶常微分方程边值问题为例,目的求,差分法,差分方程,抵押贷款买房问题,背景,每户人家都希望有一套属于自己的住房,但又没有足够的资金一次买下。这就产生了贷款买房问题。某新婚夫妇急需一套属于自己的住房。他们看到一则理想的房产广告:“名流花园之高尚住宅公寓,供工薪阶层选择。一次性付款优惠价40.2万元。若不能一次性付款也没关系,只付首期款为15万元,其余每月1977.04元等额偿还,15年还清。(公积金贷款月利息为3.675)。,问题,公寓原来价多少?每月等额付款如何算出来?,假设,贷款期限内利率不变,银行利息按复利计算,记号,A(元):贷款额(本金),n(月):货款期限,r:月利率,B(元):月均还款额,Ck:第k个月还款后的欠款,模型,求解,代入n=180、r=0.003675、B=1977.04,结果:A=260000(元),一次性优惠价9.8折,还款总额?利息负担总额?,差分形式的阻滞增长模型,连续形式的阻滞增长模型(Logistic模型),t,xN,x=N是稳定平衡点(与r大小无关),离散形式,x(t)某种群 t 时刻的数量(人口),yk 某种群第k代的数量(人口),若yk=N,则yk+1,yk+2,=N,讨论平衡点的稳定性,即k,ykN?,y*=N 是平衡点,离散形式阻滞增长模型的平衡点及其稳定性,一阶(非线性)差分方程,(1)的平衡点y*=N,讨论 x*的稳定性,变量代换,(1)的平衡点 x*代数方程 x=f(x)的根,稳定性判断,(1)的近似线性方程,x*也是(2)的平衡点,x*是(2)和(1)的稳定平衡点,x*是(2)和(1)的不稳定平衡点,补充知识,的平衡点及其稳定性,平衡点,稳定性,另一平衡点为 x=0,不稳定,的平衡点及其稳定性,初值 x0=0.2,数值计算结果,b 3,x,b=3.3,x两个极限点,b=3.45,x4个极限点,b=3.55,x8个极限点,倍周期收敛x*不稳定情况的进一步讨论,单周期不收敛,2倍周期收敛,(*)的平衡点,x*不稳定,研究x1*,x2*的稳定性,倍周期收敛,的稳定性,倍周期收敛的进一步讨论,出现4个收敛子序列 x4k,x4k+1,x4k+2,x4k+3,平衡点及其稳定性需研究,时有4个稳定平衡点,2n倍周期收敛,n=1,2,bn 2n倍周期收敛的上界,b0=3,b1=3.449,b2=3.544,n,bn3.57,b3.57,不存在任何收敛子序列,的收敛、分岔及混沌现象,b,其他差分方程模型银行复利问题减肥计划节食与运动按年龄分组的种群增长最优捕鱼策略(赵静),

    注意事项

    本文(微分方程和差分方程简介.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开