二章导数与微分.ppt
第二章 导数与微分,主讲人:张少强,Tianjin Normal University,计算机与信息工程学院,一、隐函数的导数,二、由参数方程确定的函数的导数,三、相关变化率,第四节 隐函数&参数方程所确定函数的导数,相关变化率,一、隐函数的导数,若由方程,可确定 y 是 x 的函数,由,表示的函数,称为显函数.,例如,可确定显函数,可确定 y 是 x 的函数,但此隐函数不能显化.,函数为隐函数.,则称此,隐函数求导方法:,两边对 x 求导,(含导数 的方程),例1.求由方程,在 x=0 处的导数,解:方程两边对 x 求导,得,因 x=0 时 y=0,故,确定的隐函数,例2.求椭圆,在点,处的切线方程.,解:椭圆方程两边对 x 求导,故切线方程为,即,例3.求,的导数.,解:两边取对数,化为隐式,两边对 x 求导,1)对幂指函数,可用对数求导法求导:,说明:,注意:,2)有些显函数用对数求导法求导很方便.,例如,两边取对数,两边对 x 求导,又如,对 x 求导,两边取对数,(课本P.105 例6),二、由参数方程确定的函数的导数,若参数方程,可确定一个 y 与 x 之间的函数,可导,且,则,时,有,时,有,(此时看成 x 是 y 的函数),关系,若上述参数方程中,二阶可导,且,则由它确定的函数,可求二阶导数.,利用新的参数方程,可得,?,例4.设,且,求(p.111.8(4)),已知,解:,练习:P111 题8(1),解:,注意:,例5.抛射体运动轨迹的参数方程为,求抛射体在时刻 t 的运动速度的大小和方向.,解:先求速度大小:,速度的水平分量为,垂直分量为,故抛射体速度大小,再求速度方向,(即轨迹的切线方向):,设 为切线倾角,则,抛射体轨迹的参数方程,速度的水平分量,垂直分量,在刚射出(即 t=0)时,倾角为,达到最高点的时刻,高度,落地时刻,抛射最远距离,速度的方向,例6.设由方程,确定函数,求,解:方程组两边对 t 求导,得,故,三、相关变化率,为两可导函数,之间有联系,之间也有联系,称为相关变化率,相关变化率问题解法:,找出相关变量的关系式,对 t 求导,得相关变化率之间的关系式,求出未知的相关变化率,例7.一气球从离开观察员500 m 处离地面铅直上升,其速率为,当气球高度为 500 m 时,观察员,视线的仰角增加率是多少?,解:设气球上升 t 分后其高度为h,仰角为,则,两边对 t 求导,已知,h=500m 时,思考题:当气球升至500 m 时停住,有一观测者以,100 mmin 的速率向气球出发点走来,当距离为500 m,时,仰角的增加率是多少?,提示:,对 t 求导,已知,求,内容小结,1.隐函数求导法则,直接对方程两边求导,2.对数求导法:,适用于幂指函数及某些用连乘,连除表示的函数,3.参数方程求导法,4.相关变化率问题,列出依赖于 t 的相关变量关系式,对 t 求导,相关变化率之间的关系式,求高阶导数时,从低到高每次都用参数方程求导公式,作业,P1101(1),(4);2;3(3),(4);4(2),(4);5(2);7(2);8(2),(4);12,