欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    4.3.2探索三角形全等的条件(第2课时).ppt

    • 资源ID:6272493       资源大小:351.01KB        全文页数:22页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    4.3.2探索三角形全等的条件(第2课时).ppt

    探索三角形全等的条件,(第二课时),我们知道:如果给出一个三角形三条边的长度,那么因此得到的三角形都是全等.如果已知一个三角形的两角及一边,那么有几种可能的情况呢?,每种情况下得到的三角形都全等吗?,1、角.边.角;,2、角.角.边,做一做,1、角.边.角;,若三角形的两个内角分别是60和80它们所夹的边为4cm,你能画出这个三角形吗?,80,你画的三角形与同伴画的一定全等吗?,2、角.角.边,若三角形的两个内角分别是60和40,且40所对的边为4cm,你能画出这个三角形吗?,分析:,这里的条件与1中的条件有什么相同点与不同点?你能将它转化为1中的条件吗?,两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”,两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”,三角形全等的判定公理2:B=E,BC=EF,C=F ABCDEF(ASA),三角形全等的判定公理3:B=E,C=F,AC=DF ABCDEF(AAS),练一练:,1、完成下列推理过程:,在ABC和DCB中,,ABCDCB(),ASA,A,B,C,D,O,(),公共边,2=1,AAS,3421CBBC,2、请在下列空格中填上适当的条件,使ABCDEF。,在ABC和DEF中,ABC DEF(),SSS,AB=DE,BC=EF,AC=DF,ASA,A=D,AB=DE,B=DEF,AC=DF,ACB=F,AAS,B=DEF,BC=EF,ACB=F,BC=EF,想一想:,如图,O是AB的中点,A=B,AOC与BOD全等吗?为什么?,我的思考过程如下:两角与夹边对应相等,AOCBOD,补充练习:,D,C,B,A,1、在ABC中,AB=AC,AD是边BC上的中线,证明:BAD=CAD,证明:AD是BC边上的中线BDCD(三角形中线的定义)在ABD和ACD中,ABDACD(SSS),BAD=CAB(全等三角形对应角相等),AD是BAC的角平分线。求证:BDCD,证明:AD是BAC的角平分线(已知)BADCAD(角平分线的定义)ABAC(已知)BADCAD(已证)ADAD(公共边)ABDACD(SAS)BDCD(全等三角形对应边相等),A,B,C,D,E,1,2,如图,已知CE,12,ABAD,ABC和ADE全等吗?为什么?,解:ABC和ADE全等。12(已知)1DAC2DAC即BACDAE在ABC和ADC 中,ABCADE,(AAS),B,C,D,E,A,如图:已知ABAC,BC,ABD与ACE全等吗?为什么?,ABDACE(ASA),AEAD,BC,,BCAAADAE,AAS,若ABC中,A30,B70,AC5cm,DEF中D70F80,DF5cm,那么ABC与DEF全等吗?为什么?,如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?,两角和它们的夹边对应相等的两个三角形全等。,(2)已知 和 中,=,AB=AC.,求证:(1),(4)BD=CE,证明:,(2)AE=AD,(全等三角形对应边相等),(已知),(已知),(公共角),(等式的性质),(3)如图,AC、BD交于点,AC=BD,AB=CD.求证:,A,B,C,D,练一练:,O,再创辉煌:,1、如图ACB=DFE,BC=EF,根据ASA或AAS,那么应补充一个直接条件-,(写出一个即可),才能使ABCDEF,2、如图,BE=CD,1=2,则AB=AC吗?为什么?,A,B,C,D,E,F,B=E或A=D,如图,ABCD,ADBC,那么AB=CD吗?为什么?AD与BC呢?,五、思考题,小结,(1)两角和它们的夹边对应相等的两个三角形全等.,简写成“角边角”或“ASA”.,(2)两角和其中一角的对边对应相等的两个三角形全等.,简写成“角角边”或“AAS”.,知识要点:,(3)探索三角形全等是证明线段相等(对应边相等),角相等(对应角相等)等问题的基本途径。,数学思想:,要学会用分类的思想,转化的思想解决问题。,

    注意事项

    本文(4.3.2探索三角形全等的条件(第2课时).ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开