2022净零热储能长时储能加速能源系统脱碳英文版.docx
McKinsey& CompanyLDESLONG DURATION ENERGY STORAGE COUNCILNet-zeroheat1.ongDurationEnergyStoragetoaccelerateenergysystemdecarbonizationPublishedinNovember2022bytheLDESCouncil.Copiesofthisdocumentareavailableuponrequestorcanbedownloadedfromourwebsite:.ThisreportwasauthoredbytheLDESCouncilincollaborationwithMcKinsey&Companyasknowledgepartner.Thisworkisindependent,reflectstheviewsoftheauthors,andhasnotbeencommissionedbyanybusiness,government,orotherinstitution.Theauthorsofthereportconfirmthat:1 .Therearenorecommendationsand/oranymeasuresand/ortrajectorieswithinthereportthatcouldbeinterpretedasstandardsorasanyotherformof(suggested)coordinationbetweentheparticipantsofthestudyreferredtowithinthereportthatwouldinfringeEUcompetitionlaw;and2 Itisnottheirintentionthatanysuchformofcoordinationwillbeadopted.Whilethecontentsofthereportanditsabstractimplicationsfortheindustrygenerallycanbediscussedoncetheyhavebeenprepared,individualstrategiesremainproprietary,confidential,andtheresponsibilityofeachparticipant.Participantsareremindedthat,aspartoftheinvariablepracticeoftheLDESCouncilandtheEUcompetitionlawobligationstowhichmembershipactivitiesaresubject,suchstrategicandconfidentialinformationmustnotbesharedorcoordinated-includingaspartofthisreport.ContentsPreface4Executivesummary8Acronyms131. TheroleofLDESinnet-zeroenergy142. TESasanenablertodecarbonizingheat183. LDEStechnologiescostandcompetitiveness244. TESbusinesscases345. Anintegratedenergysystemperspective486. UnlockingtheTESopportunity54Conclusion57Appendix A: Methodologyandassumptions58Appendix B: StateoftheTESindustry67Acknowledgements69PrefaceWemustcapturethenarrowwindowofopportunitytoachieveanet-zeroenergysystem.Thedecarbonizationoftheenergysectorneedstoacceleratetobecomealignedwithanet-zeropathwaythatlimitsglobalwarmingtobelow1.5oC.However,achievingnet-zeroemissionsby2050requiresmassivedevelopmentofrenewables,newandreinforcedinfrastructure,andtheadoptionofnewcleantechnologies.Manychallengescompoundinthistransition,assupplychainsneedtobescaledup,end-useequipmentneedstobeadapted,andinfrastructureneedstobedeployedandreinforced(forexample,transmissionanddistributionelectricitygridexpansionscantakeupto15yearstorealize).Immediateactionisrequiredtomeetemission-reductiontargets,limittheimpactofclimatechange,andmaximizetheopportunitiesahead.Asoutlinedinthe2021LDESNet-zeropowerreport,1long-durationenergystorage(LDES)offersalow-costflexibilitysolutiontoenableenergysystemdecarbonization.LDES, Whenever LDES is mentioned as a technology group, it is defined as a technology storing energy for ten or more hours, as per ARPA-E'sdefinition. When LDES is mentioned in analysis or modeling, the actual duration length is always specified, in line with NRELs recommendation.canbedeployedtostoreenergyforprolongedperiodsandcanbescaledupeconomicallytosustainenergyprovisionformultiplehours(tenormore),days(multidaystorage),months,andseasons.LDEScanstoreenergyinvariousforms,includingmechanical,thermal,electrochemical,orchemicalandcancontributesignificantlytothecost-efficientdecarbonizationoftheenergysystem.Furthermore,ithelpsaddressmajorenergytransitionchallengessuchassolarandwindenergysupplyvariability,gridinfrastructurebottlenecks,oremissionsfromheatgeneration.ThisreportpresentsthelatestviewontheroleofLDESinhelpingachieveNet-zeropowerandheatby2050, It is assumed that the power sector achieves net-zero emissions by 2040, and other sectors by 2050.focusingonthepotentialroleofthermalenergystorage(TES)inrealizingnet-zeroheat.ItbuildsonpriorLDESCouncilresearchandanalysisandpresentsupdatedcostperspectivesbasedondatafromLDESCouncilmembers.Asafollow-uptopreviousLDESCouncilpublications,thisreportfocusesontheheatsector,apivotalcomponentinachievingglobaldecarbonizationandclimatetargets.Accordingly,italsofocusesonaparticularsetofLDEStechnologies,TES,whichcanstoreheat,decarbonizeheatapplications,andintegraterenewablesinthissectorandthebroaderenergysystem.Thisreportalsohighlightshowanintegratedsystemapproachisimperativetocost-efficientlydecarbonizingenergysystems. The definition of energy system used in this report includes all components related to the production, nversion, and use of electrical energy, heat, and hydrogen. The electrification of the transport sector is included indirectly in the final electricity demand scenario from the McKinsey Global Energy Perspective.Electricity,heat,andhydrogenarebecomingincreasinglyinterconnected,drivenbythegrowinguptakeofrenewableenergyandaccesstotechnologiesthatintegratethem,suchasheatpumpsandLDES(Exhibit1).Thiscreatestheneedtolookattheintegratedecosystemratherthantheseparateenergysectorstojointlyinformcost-optimizedenergyinfrastructuredevelopments.Theanalysesinthisreporttakeinterdependenciesbetweenpower,heat,andhydrogenintoaccounttoassessthecost-optimizedmixofflexibilitysolutionsneededfortheheatandpowersectors.IthighlightstherelationshipbetweenpowerLDESandTEStoacceleratetheenergytransition,andtherolethatTEScanplayindecarbonizingheatapplications.Hydrogen-to-heatExhibit1Power,heat,andhydrogeninterconnectionsPowerPower-to-hydrogenHydrogen-to-powerAbouttheLDESCouncilTheLDESCouncilisaglobal,executive-ledorganizationthatstrivestoacceleratethedecarbonizationoftheenergysystematthelowestcosttosocietybydrivingtheinnovationanddeploymentofLDESanddecreasingemissions.TheLDESCouncilwaslaunchedattheConferenceofParties(COP)26andcurrentlycomprises64companies. Member count at the time of the release of this report in November 2022.Itprovidesfact-basedguidancetogovernmentsandindustry,drawingfromtheexperiencesofitsmembers,whichincludeleadingtechnologyproviders,industryandservicecustomers,capitalproviders,equipmentmanufacturers,andlow-carbonenergysystemintegratorsanddevelopers.Alltechnologyproviders,industryandservicescustomers,capitalproviders,equipmentmanufacturers,andlow-carbonenergysystemintegratorsanddevelopersaremembersoftheLDESCouncil.TechnologyprovidersiIMo三CXElectrifIed二ThermalSolutionsezncmAGRLDIEnefgiSeItlAmbriIlENERGYVAULTFormenergyALIARyeDevelopment电AZELlOZ=Xenercsvdo<vie-f8Xyn,Aucv'HEATRIIXTWRMALSaItXBreezel-.=-¼.7.ORGYsLIHighview11Power,MINESTORAGEStiesdal(BBENMlLLEENEKOYHydrostorPeniel,StorworksU臼IULJtDaENLIGHTE11INVINITYI-Ie11eR0Ysystems三=*J三2THERMOWA11ceres9eosIIKRAFTK_lBLOCK/QTORCyECHOGENpowersystemsESSKXOXOj.redflowOSTORAGEIndustryandservicescustomers<)COMPASSEGA产KUxd如&4Jum匕ILAVl5VAMOiUU.*WMIMIinGogle:MicrosoftRioTinto三llllll三SOUTH32CapitalprovidersBreakthrough¾cEnergyPARTNERSEquipmentmanufacturersBakerHUghe5»SIEMENSeGGYVOITH1.ow-carbonenergysystemintegratorsanddevelopers6CorreenergyEnBUJgroenkSumitomoSmFWrstedRelianceled>!rW4Ut0dTotaiEner9sExecutivesummaryDecarbonizingtheglobalenergysystemrequiresanintegratedapproachtoinformoptimalenergyinfrastructuredevelopmentsinatimelymanner.Italsorequiressystemicchangesaswemovetowardenergysystemspredominantlysuppliedbyvariablerenewableenergy.Torealizea1.5scenarioby2050,projectionsestimateafivefoldincreaseintotalrenewablessupplyandatwofoldincreaseintotalelectricitydemandbythatyear. "Net zero by 2050, a roadmap for the global energy sector," IEA, 2021.Furthermore,thereareearlysignsthatpower,heat,andhydrogenarebecomingincreasinglyinterconnectedthroughsector-uplingtechnologieslikeheatpumps,electrolyzers,orhydrogenboilers.This,inadditiontothegrowingshareofrenewablesandelectrification,furtherincreasestheenergysystem'scomplexity.Therefore,anintegratedapproachcouldhelpensureacost-optimizedandtimelyenergytransition.1.DESoffersacleanflexibilitysolutiontosecurepowerandheatreliability.LDESencompassesarangeoftechnologiesthatcanstoreelectricalenergyinvariousformsforprolongedperiodsatacompetitivecostandatscale.Thesetechnologiescanthendischargeelectricalenergywhenneeded-overhours,days,orseasons-inordertofulfilllong-durationsystemflexibilityneedstoshifttheincreasingvariable,renewableenergysupplytomatchdemand.Thisreportbuildsonthe2021LDESCouncilNet-zeropowerreportbyfocusingontheroleofLDESinrealizingnet-zeropowerandheatwhileexpandingontherolethermalenergystorage(TES)canplayindecarbonizingheatapplications.TESprovidesanLDESsolutiontoelectrifyingandfirmingheat.Decarbonizingtheheatsectoriscrucialforrealizinganet-zeroenergysystemby2050,giventhatitrepresentsroughly45percentofallenergy-relatedemissionstoday. The baseline includes emissions from heating, industrial processes, transport, and other energy sector emissions. It excludes power generation emissions.TEScandecarbonizeheatapplicationsbyelectrifyingandfirmingheatwithvariablerenewableenergysources.Inaddition,itcanoptimizeheatconsumptioninindustrialprocessesandfacilitatethereuseofwasteheatortheintegrationofcleanheatsources(forexample,fromthermalsolar).TEScanenablethecost-efficientelectrificationofmostheatapplications.TEScoversavarietyoftechnologiesthatcanaddressawiderangeofstoragedurations(fromintradaytoseasonal)andtemperatures(fromsubzeroto2,400oC).Accordingtothe2022LDESbenchmarkresults,TESenablescost-efficientelectrificationanddecarbonizationofthemostwidelyusedheatapplications,namelysteamandhotair.Thebenchmarkresultsalsoindicatethatfirmingheatisverycost-efficientwhenthefinaldemandisheat.SomeTEStechnologiesarealreadycommerciallyavailablewithvariouseasy-to-customizeuses.Todate,themostcommonlydeployedTEStechnologiesincludemedium-pressuresteam,withvariousapplications,includinginthechemicalsorfoodandbeverageindustries.Additionally,developingtechnologieswillexpandtheTESsolutionspacewithinnovativeconceptsandaddresstemperatureneedswellabove1,000oC.TESbusinesscasesdemonstrateprofitabilityataninternalrateofreturn(IRR)of16to28percent,subjecttolocalmarketconditions.Theseincludeoptimalphysicalconfigurations(accesstocaptiverenewables,captiveheat,orgridelectricity)andmarketdesigns(includinglowgridfeesandtheremunerationofflexibility).ThebusinesscaseassessmentscoverawiderangeofrealisticTESusecases,namely:medium-pressuresteaminachemicalsplant(upto28percentIRR),districtheatingsuppliedbyapeakerplant(upto16percentIRR),high-pressuresteaminanaluminarefinery(upto16percentIRR),andco-generationinanoff-gridgreenhouse(upto22percentIRR).Allmarket-exposedbusinesscasesindicateasupportiveecosystemthatacknowledgesthevalueofflexibility,suchasancillaryservices,wouldlikelybecriticaltoensuringwidecommercialadoption.Thebusinesscasewithbehind-the-meterrenewablegenerationshowsthatTEScanalreadybecommerciallyfeasibleregardlessofexternalmarketconditions.1.DEStechnologiesareexpectedtobecomeincreasinglycost-competitiveasthemarketmatures.Theupdated2022powerLDEScostbenchmarksolidifiestheforecastthatLDEScostswilldeclineinthefollowingyears,suggestinga25to50percentoverallcapitalexpenditure(capex)reductionofpowerLDEStechnologiesby2040.Inaddition,the2022TEScostbenchmarkindicatesthatTEScapexisalsoexpectedtodeclineby2040,withanestimateddropofbetween5and30percentforpowercapexand15and70percentforenergystoragecapex.AcasestudyontheportofRotterdamexemplifiestherelevanceofLDESfordecarbonizingenergyhubswhilecreatingsystemvalue.Thecasestudyrepresentsatypicalindustrialhubwithsignificantpowerandheatdemandon-site,whereacombinationofTESandpowerLDEScanplayaroleindecarbonizingthesystem.InanindustriallocationliketheportofRotterdam,theneedforindustrialheatingcanfundamentallychangetheconfigurationforanet-zeroenergysystem.TEScanfirmthevariableoffshorewindsupplyintoamorestablesupplyofcleanheatforindustrialheating,includinghigh-temperatureheating.TEScoulddoubletheglobalLDEScapacitypotentialinacost-optimizednet-zeroenergypathwayinlinewitha1.5oCscenario.Basedonintegratedsystemmodeling,TEScanexpandtheoverallinstalledcapacitypotentialofLDEStobetween2and8TWby2040(versus1to3TWwithoutTES),whichtranslatestoacumulativeinvestmentofUSD1.6trilliontoUSD2.5trillion.TESenablesthisadditionalLDESopportunitybyprovidingacost-efficientalternativetodecarbonizingheatandhigh-tem-peratreheatingapplications.ThisisestimatedtoreducesystemcostsbyuptoUSD540billionperyearwhilecreatingbroadersystemvaluebyenablinganacceleratedrenewablesbuild-outandoptimizationofgridutilization.CriticalsupportelementscouldhelpdrivemoreTESadoption.AsupportiveecosystemthatrewardsflexibilityandpromotesatechnologicallylevelplayingfieldforflexibilitysolutionslikeLDESiscriticaltoacceleratingthescale-upofTES.Additionally,increasingawarenessandprovidingsupporttoderiskinitialinvestmentsispivotal.Businessleaders,policymakers,andinvestorshaveanimportantroletoplayinunlockingtheTESpotentialbyreducinglong-termuncertaintyandtherebyshapingthecost-optimizedpathwaytowardthenet-zeroenergysystemofthefuture.Net-zeroheat1.ongDurationEnergyStoragetoaccelerateenergysystemdecarbonizationThe transition to net zero requires an integrated energy system perspectiveRealizing a cost-optimized transition to net zero across all energy sectors requires significant deployment of renewables, increased interconnections between power, heat, and hydrogen, and supporting infrastructure. System flexibility will be critical to securing energy system reliabilityHeatdecarbonizationiscriticalfornetzero,asitaccountsfor-45%ofenergy-relatedemissionsGlobal final energy consumption by sectorShare of global energy-related CO2e emissions1Machinery, appliances, lightingIndustryTransportationBuildings: heatingDistrict heating Buildings: cookingHeatingandcooling20%from industrial heat10%from buildings heatLongdurationenergystorageenablesacost-optimizedpathwaytowardnetzeroAcost-optimizednet-zeropathwaycouldby2040resultin.2-8 TWdeployed LDEScapacityUSD 1.7-3,6 trcumulative LDES capexinvestmentsOU.O-.uptoUSD540bnsystemsavingsperyearThermalenergystorage(TES).prisesawiderangeoftechnologies2,400oC<0(Q)Storage duration use caseSome TES technologies arealready commercially availableStorage temperatureR&D Pilots Commercially availableTechnical maturityTESenableselectrificationofheatapplicationswithdifferenttemperatureanddurationneeds. is a cost-efficient 24/7 heat decarbonization solutionTechnologyLevelized cost of heat (steam) for selected technologies1 USD/MWhbatterybatteryTESmakesstoringheatmorecost-efficientthanstoringpowerforheatapplications.canpresentattractivebusinesscasessubjecttolocalconditions.IRRsforselectedusecasesUpsidecase28%16%16%22%Basecase6%0%ChemicalsOff-gridDistrictheatingAluminaplantgreenhousepeakerplantrefineryTESbehind-the-meterbusinesscasescanbepositiveastherearenogridconnectionfees.