欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    同济六版高数第四章第1节.ppt

    • 资源ID:6252182       资源大小:432.50KB        全文页数:26页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    同济六版高数第四章第1节.ppt

    4.1 不定积分的概念与性质,一、原函数与不定积分的概念,二、基本积分表,三、不定积分的性质,微分法:,积分法:,互逆运算,一、原函数与不定积分的概念,一、原函数与不定积分的概念,原函数的概念 如果在区间I上,可导函数F(x)的导函数为f(x),即对任一xI,都有F(x)f(x)或dF(x)f(x)dx,那么函数F(x)就称为f(x)(或f(x)dx)在区间I上的原函数.,原函数举例,所以sin x是cos x的原函数.,因为(sin x)cos x,提问:,问题:,1.在什么条件下,一个函数的原函数存在?,2.若原函数存在,它如何表示?,原函数存在定理,如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一xI 都有F(x)f(x).简单地说就是:连续函数一定有原函数.,初等函数在定义区间上连续,初等函数在定义区间上有原函数,说明:1.如果函数f(x)在区间I上有原函数F(x),那么f(x)就有无限多个原函数,F(x)C都是f(x)的原函数,其中C是任意常数.,2.函数 f(x)的任意两个原函数之间只差一个常数,即如果(x)和F(x)都是f(x)的原函数,则(x)F(x)C(C为某个常数).,证:1),又知,故,即,属于函数族,即,不定积分中各部分的名称:-称为积分号,f(x)-称为被积函数,f(x)dx-称为被积表达式,x-称为积分变量.,不定积分的概念,在区间I上,函数f(x)的带有任意常数项的原函数称为f(x)(或f(x)dx)在区间I上的不定积分,记作,根据定义,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)C就是f(x)的不定积分,即,在区间I上,函数f(x)的带有任意常数项的原函数称为f(x)(或f(x)dx)在区间I上的不定积分,记作,不定积分的概念,C 称为积分常数不可丢!,例1,因为sin x 是cos x 的原函数,所以,如果F(x)是f(x)的一个原函数,则,例2,合并上面两式,得到,解,如果F(x)是f(x)的一个原函数,则,例3 设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线的方程.解 设所求的曲线方程为yf(x),则曲线上任一点(x,y)处的切线斜率为yf(x)2x,即f(x)是2x 的一个原函数.,故必有某个常数C使f(x)x2C,即曲线方程为yx2C.因所求曲线通过点(1,2),故21C,C1.于是所求曲线方程为yx21.,因为,函数f(x)的积分曲线也有无限多.函数f(x)的不定积分表示f(x)的一簇积分曲线,而f(x)正是积分曲线的斜率.,积分曲线 函数f(x)的原函数的图形称为f(x)的积分曲线.,2x的积分曲线,例3.质点在距地面,处以初速,力,求它的运动规律.,解:取质点运动轨迹为坐标轴,原点在地面,指向朝上,质点抛出时刻为,此时质点位置为,初速为,设时刻 t 质点所在位置为,则,(运动速度),(加速度),垂直上抛,不计阻,先求,由,知,再求,于是所求运动规律为,由,知,故,微分与积分的关系 从不定积分的定义可知,又由于F(x)是F(x)的原函数,所以,由此可见,如果不计任意常数,则微分运算与求不定积分的运算是互逆的.,二、基本积分表,例5,例4,例6,三、不定积分的性质,这是因为,f(x)g(x).,性质1,三、不定积分的性质,性质1,性质2,例7,例8,例10,三、不定积分的性质,性质1,性质2,例9,例11,例12,例13,tan xxC.,例14,例15,内容小结,1.不定积分的概念,原函数与不定积分的定义,不定积分的性质,基本积分表,2.直接积分法:,利用恒等变形,及 基本积分公式进行积分.,常用恒等变形方法,分项积分,加项减项,利用三角公式,代数公式,积分性质,思考与练习,1.若,提示:,2.若,是,的原函数,则,提示:,已知,3.若,的导函数为,则,的一个原函数,是().,提示:,已知,求,即,D,?,?,或由题意,其原函数为,4.已知,求 A,B.,解:等式两边对 x 求导,得,

    注意事项

    本文(同济六版高数第四章第1节.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开