卷积神经网络在图像识别中的应用.ppt
卷积神经网络在图像识别中的应用,目录,卷积神经网络的发展及其特点卷积神经网络模型卷积神经网络的训练卷积神经网络应用于人脸识别,Hubel和Wiesel在研究猫脑皮层中用于局部敏感方向选择的神经元时,发现其独特的网络结构可以有效降低反馈神经网络的复杂性。Fukushima提出了第一个基于神经元之间的局部连接型和层次结构组织的用于转化图像的网络Neocognition.根据Fukushima的观点,LeCun提出了以LeNet为代表的卷积神经网络。,卷积神经网络的发展,卷积神经网络的特点,卷积神经网络是一类特别设计用来处理二维数据的多层神经网络。卷积神经网络被认为是第一个真正成功的采用多层层次结构网络的具有鲁棒性的深度学习方法。用卷积神经网络做图像处理时,原始图像不需要太多的预处理就可以较好地学习到图像的不变性特征。权值共享、局部感受野和子采样是卷积神经网络不同于其它神经网络的三个主要特征。,卷积神经网络模型,输入图像通过滤波器和可加偏置进行卷积得到C1层;对C1层的特征图进行下采样得到S2层;对S2层的特征图进行卷积得到C3层;对C3层的特征图进行下采样得到S4层;S4层的特征图光栅化后变成的向量输入到传统的全连接神经网络进行进一步分类,得到输出;,输入,C1,S2,C3,S4,卷积和下采样(降采样)过程,卷积过程,池化过程:取某个特定区域的最大值或平均值,图像,卷积特征,取平均值,9,4,卷积神经网络的训练过程,第一阶段:前向传播过程,第二阶段:反向传播过程,从样本集中取一个样本输入到网络中;计算相应的实际输出;,在这个阶段,输入的信息经过逐层变换,传输到输出层。主要是前向的特征提取。,计算实际输出与期望输出的差;按极小化误差的方法反向传播,调整权值矩阵;,反向传播就是误差的反向反馈和权值的更新。,网络训练流程图,Olivetti Faces人脸数据集介绍,Olivetti Faces是纽约大学的一个比较小的人脸库包含40个人的人脸图片,每个人10张人脸样本,共400份样本,程序所参考的卷积神经网络结构:LeNet-5,两个“卷积+子采样层”LeNetConvPoolLayer全连接层相当于MLP(多层感知机)中的隐含层HiddenLayer输出层采用逻辑回归LogisticRegression,input+layer0(LeNetConvPoolLayer)+layer1(LeNetConvPoolLayer)+layer2(HiddenLayer)+layer3(LogisticRegression),程序模块介绍,加载图像数据函数:load_data(dataset_path)卷积+采样层:class LeNetConvPoolLayer(object)全连接层(隐藏层):class HiddenLayer(object)分类器,即CNN最后一层:class LogisticRegression(object)保存训练参数函数:save_params(param1,param2,param3,param4),learning_rate=0.05/学习速率batch_size=40/一次输入CNN的样本数n_epochs=100/最大训练步数nkerns=20,50/第一层卷积核个数为20,第二层卷积核个数为50poolsize=(2,2)/从一个2*2的区域里maxpooling 出1个像素,程序中可设置的参数,谢 谢!,