欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    北大微观经济学课件]ch4Utility.ppt

    • 资源ID:6246150       资源大小:286.49KB        全文页数:38页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    北大微观经济学课件]ch4Utility.ppt

    Chapter Four,Utility效用,Structure,Utility function(效用函数)DefinitionMonotonic transformation(单调转换)Examples of utility functions and their indifference curvesMarginal utility(边际效用)Marginal rate of substitution 边际替代率MRS after monotonic transformation,Utility Functions,A utility function U(x)represents a preference relation if and only if:x x”U(x)U(x”)x x”U(x)U(x”)x x”U(x)=U(x”).,p,p,Utility Functions,Utility is an ordinal(i.e.ordering)concept.序数效用E.g.if U(x)=6 and U(y)=2 then bundle x is strictly preferred to bundle y.But x is not preferred three times as much as is y.,Utility Functions&Indiff.Curves,Consider the bundles(4,1),(2,3)and(2,2).Suppose(2,3)(4,1)(2,2).Assign to these bundles any numbers that preserve the preference ordering;e.g.U(2,3)=6 U(4,1)=U(2,2)=4.Call these numbers utility levels.,p,Utility Functions&Indiff.Curves,An indifference curve contains equally preferred bundles.Equal preference same utility level.Therefore,all bundles in an indifference curve have the same utility level.,Utility Functions&Indiff.Curves,So the bundles(4,1)and(2,2)are in the indiff.curve with utility level U 4But the bundle(2,3)is in the indiff.curve with utility level U 6.On an indifference curve diagram,this preference information looks as follows:,Utility Functions&Indiff.Curves,U 6,U 4,(2,3)(2,2)(4,1),x1,x2,p,Utility Functions&Indiff.Curves,Comparing more bundles will create a larger collection of all indifference curves and a better description of the consumers preferences.,Utility Functions&Indiff.Curves,U 6,U 4,U 2,x1,x2,Utility Functions&Indiff.Curves,The collection of all indifference curves for a given preference relation is an indifference map.An indifference map is equivalent to a utility function;each is the other.,Utility Functions,There is no unique utility function representation of a preference relation.Suppose U(x1,x2)=x1x2 represents a preference relation.Again consider the bundles(4,1),(2,3)and(2,2).,Utility Functions,U(x1,x2)=x1x2,soU(2,3)=6 U(4,1)=U(2,2)=4;that is,(2,3)(4,1)(2,2).,p,Utility Functions,U(x1,x2)=x1x2(2,3)(4,1)(2,2).Define V=U2.,p,Utility Functions,U(x1,x2)=x1x2(2,3)(4,1)(2,2).Define V=U2.Then V(x1,x2)=x12x22 and V(2,3)=36 V(4,1)=V(2,2)=16so again(2,3)(4,1)(2,2).V preserves the same order as U and so represents the same preferences.,p,p,Utility Functions,U(x1,x2)=x1x2(2,3)(4,1)(2,2).Define W=2U+10.,p,Utility Functions,U(x1,x2)=x1x2(2,3)(4,1)(2,2).Define W=2U+10.Then W(x1,x2)=2x1x2+10 so W(2,3)=22 W(4,1)=W(2,2)=18.Again,(2,3)(4,1)(2,2).W preserves the same order as U and V and so represents the same preferences.,p,p,Utility Functions:Monotonic Transformation,If U is a utility function that represents a preference relation and f is a strictly increasing function,then V=f(U)is also a utility functionrepresenting.,Goods,Bads and Neutrals,A good is a commodity unit which increases utility(gives a more preferred bundle).A bad is a commodity unit which decreases utility(gives a less preferred bundle).A neutral is a commodity unit which does not change utility(gives an equally preferred bundle).,Goods,Bads and Neutrals,Utility,Water,x,Units ofwater aregoods,Units ofwater arebads,Around x units,a little extra water is a neutral.,Utilityfunction,Some Other Utility Functions and Their Indifference Curves,Perfect substitute V(x1,x2)=x1+x2.Perfect complementW(x1,x2)=minx1,x2Quasi-linearU(x1,x2)=f(x1)+x2Cobb-Douglas Utility FunctionU(x1,x2)=x1a x2bWhat do the indifference curves for these utility functions look like?,Perfect Substitution Indifference Curves,5,5,9,9,13,13,x1,x2,x1+x2=5,x1+x2=9,x1+x2=13,All are linear and parallel.,V(x1,x2)=x1+x2.,Perfect Complementarity Indifference Curves,x2,x1,45o,minx1,x2=8,3,5,8,3,5,8,minx1,x2=5,minx1,x2=3,All are right-angled with vertices on a rayfrom the origin.,W(x1,x2)=minx1,x2,Quasi-Linear Utility Functions,A utility function of the form U(x1,x2)=f(x1)+x2is linear in just x2 and is called quasi-linear(准线性).E.g.U(x1,x2)=2x11/2+x2.,Quasi-linear Indifference Curves,x2,x1,Each curve is a vertically shifted copy of the others.,Cobb-Douglas Utility Function,Any utility function of the form U(x1,x2)=x1a x2bwith a 0 and b 0 is called a Cobb-Douglas utility function.E.g.U(x1,x2)=x11/2 x21/2(a=b=1/2)V(x1,x2)=x1 x23(a=1,b=3),Cobb-Douglas Indifference Curves,x2,x1,Marginal Utilities,Marginal means“incremental”.The marginal utility of commodity i is the rate-of-change of total utility as the quantity of commodity i consumed changes;i.e.,Marginal Utilities,If U(x1,x2)=x11/2 x22 then,Marginal Utilities and Marginal Rates-of-Substitution,The general equation for an indifference curve is U(x1,x2)k,a constant.Totally differentiating this identity gives,Marginal Utilities and Marginal Rates-of-Substitution,rearranged is,This is the MRS.,Marg.Utilities An example,Suppose U(x1,x2)=x1x2.Then,so,Marg.Utilities An example,MRS(1,8)=-8/1=-8 MRS(6,6)=-6/6=-1.,x1,x2,8,6,1,6,U=8,U=36,U(x1,x2)=x1x2;,Marg.Rates-of-Substitution for Quasi-linear Utility Functions,A quasi-linear utility function is of the form U(x1,x2)=f(x1)+x2.,so,Marg.Rates-of-Substitution for Quasi-linear Utility Functions,x2,x1,MRS=-f(x1)does not depend upon x2.,MRS is a constantalong any line for which x1 isconstant.,MRS=-f(x1),MRS=-f(x1”),x1,x1”,Monotonic Transformations&Marginal Rates-of-Substitution,Applying a monotonic transformation to a utility function representing a preference relation simply creates another utility function representing the same preference relation.What happens to marginal rates-of-substitution when a monotonic transformation is applied?,Monotonic Transformations&Marginal Rates-of-Substitution,For U(x1,x2)=x1x2 the MRS=-x2/x1.Create V=U2;i.e.V(x1,x2)=x12x22.What is the MRS for V?which is the same as the MRS for U.,Monotonic Transformations&Marginal Rates-of-Substitution,More generally,if V=f(U)where f is a strictly increasing function,then,So MRS is unchanged by a positivemonotonic transformation.,

    注意事项

    本文(北大微观经济学课件]ch4Utility.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开