欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    动态几何解题分析示例与思考策略.ppt

    • 资源ID:6245503       资源大小:502KB        全文页数:44页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    动态几何解题分析示例与思考策略.ppt

    动态几何问题思考策略与解题方法,“动”变“静”,“难”变“易”,重庆市渝中区第57中刘晓丰,关于对动态几何问题的理解,以运动的观点探究几何图形部分变化规律的问题,称之为动态几何问题.,动态几何问题充分体现了数学中的“变”与“不变”的和谐统一,其特点是图形中的某些元素(点、线段、角等)或某部分几何图形按一定的规律运动变化,从而又引起了其它一些元素的数量、位置关系、图形重叠部分的面积或某部分图形的形状等发生变化,但是图形的一些元素数量和关系在运动变化的过程中却互相依存,具有一定的规律可寻.,一、动态几何问题涉及的常见情况,1、点动,(有单动点型、多动点型),2、线动,(主要有线平移型、旋转型),线动实质就是点动,即点动带动线动,进而还会产生形动,因而线动型几何问题常通过转化成点动型问题求解,3、形动,按运动对象分类:,按运动形式分类:,平移,旋转,翻折,滚动,问题设计的背景看主要有,位置约束型:它一般以简单图形为背景,探索研究因动点引起相关数量(或位置)的变化.时间关系型:这类问题就提出的问题来说,有线段、角以及面积等数量问题;形状位置问题,以及函数(包括直角坐标系)问题,动态几何问题综合了代数、几何中较多的知识点,解答时要特别注意以下 八点:,2、把握运动变化的形式及过程;,3、思考运动初始状态时几何元素的数量和关系;,4、“动”中取“静”,5、找等量关系,6、列方程,7、是否分类讨论,8、确定变化分界点,(重难点),(重难点),(重难点),思考策略与解题方法,1、读一问,做一问;,要善于在“动”中取“静”,在图形和各个几何量都“静”下来的状态下,以变化中的“不变量”和不变关系为“向导”,用含有变量的代数式表示相关的几何量;,(重难点),“动”中取“静”,(重难点),如图1,点P、Q分别是边长为4cm的等边ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(2)何时PBQ是直角三角形?,要善于在“动”中取“静”,在图形和各个几何量都“静”下来的状态下,以变化中的“不变量”和不变关系为“向导”,用含有变量的代数式表示相关的几何量;,常利用面积关系、相似三角形的性质、勾股定理、特殊图形的几何性质等,寻找基本的等量关系式;,找等量关系,列方程,将含有变量的代数式和相关的常量代入等量关系式建立方程或函数模型;某些几何元素的变化会带来其它几何量的变化,所以在求变量之间的关系时,通常建立函数模型.在解决有关特殊点、特殊值、特殊位置关系问题时常结合图形建立方程模型求解.,将变化的几何元素按题目指定的运动路径运动一遍,从动态的角度去分析观察可能出现的情况,看图形的形状是否改变,或图形的有关几何量的计算方法是否改变,以明确是否需要根据运动过程中的特殊位置分类讨论解决.,是否分类讨论,(重难点),确定变化分界点,若需分类讨论,常以运动过程中一些特殊位置的点为分界点,并画出与之对应情况相吻合的“静态”图形,根据情况发生改变的时刻,确定变化的范围分类求解.,选送考试26题,2、把握运动变化的形式及过程;,3、思考运动初始状态时几何元素的数量和关系;,4、“动”中取“静”,5、找等量关系,6、列方程,7、是否分类讨论,8、确定变化分界点,思考策略与解题方法,1、读一问,做一问;,读,动,静,找,列,分,讨,思,三、典型例题,如图1所示,一张三角形纸片ABC,ACB=90,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成AC1D1 和BC2D2两个三角形(如图2所示).将纸片AC1D1沿直线D2B(AB)方向平移(点始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.(1)当AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;(2)(3)(2)设平移D2D1距离为x,AC1D1与BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的x的值,使重叠部分的面积等于原ABC面积的.若存在,求x的值;若不存在,请说明理由.,读,如图1所示,一张三角形纸片ABC,ACB=90,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成AC1D1 和BC2D2两个三角形(如图2所示).将纸片AC1D1沿直线D2B(AB)方向平移(点始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.(1)当AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;(2)(3,把握运动变化的形式及过程,这是一个图形的平移运动,思考运动初始状态时几何元素的数量和关系,因为在中,AC=8,BC=6,则由勾股定理,得AB=10.因为,CD是斜边上的中线,所以DC=DA=DB,即C1D1=C2D2=BD2=AD1C1=A,C2=B,C1+C2=900.,“动”中取“静”,让图形和各个几何量都“静”下来.,下结论:因为是平移,所以,C1=AFD2,C1=A,AFD2=A,所以AD2=D2F.同理:BD1=D1E.又因为 AD2=BD1,所以 AD2=AD1-D1D2,BD1=BD2-D1D2,所以D1E=D2F,D1E=D2F,猜想图中的D1E与D2F的数量关系,如图1所示,一张三角形纸片ABC,ACB=90,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成AC1D1 和BC2D2两个三角形(如图2所示).将纸片AC1D1沿直线D2B(AB)方向平移(点始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.(1)(2)设平移D2D1距离为x,AC1D1与BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;,读,(1)第2问是求变量之间的关系,则建立函数模型.(2)按题目指定的运动路径运动一遍,重叠部分图形的形状不发生改变,则不需要分类讨论解决.,(3)找等量关系式:,用面积割补法,BC2D2的面积等于ABC面积的一半,等于12.为便于求三角形的面积,选择BD1E的的底为BD1,需求边BD1上的高和RtC2OF的两直角边.(4)“动”中取“静”:我们视自变量x为“不变量”,以D1D2=x为“向导”,用含有自变量x的代数式表示两三角形的底和高.,图2,“动”中取“静”,求BD1E的的底为BD1和边BD1上的高,因为D2D1=x,所以D1E=BD1=D2F=AD2=5-x,由C1D1C2D2得BC2D2 BED1,又ABC的边AB上的高是.设BED1的边BD1上的高为h,所以,所以,“动”中取“静”,又C2F=x,C1+C2=900,所以FPC2=900.在RtEFG中,C2=B.所以,而所以,“动”中取“静”,求FPC2的底和高.,方法二:相似三角形的面积比,如图1所示,一张三角形纸片ABC,ACB=90,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成AC1D1 和BC2D2两个三角形(如图2所示).将纸片AC1D1沿直线D2B(AB)方向平移(点始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.(1)(2)(3)对于(2)中的结论是否存在这样的x的值,使重叠部分的面积等于原ABC面积的.若存在,求x的值;若不存在,请说明理由.,读,第3问是求特殊值问题,则建立方程模型求解,存在,当 时,即整理得,3x2-20 x+25=0.解得.即当 或x=5时,重叠部分的面积等于原ABC面积的.,如图,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC8cm,BC6cm,C90,EG4cm,EGF90,O是EFG斜边上的中点 如图,若整个EFG从图的位置出发,以1cm/s 的速度沿射线AB方向平移,在EFG 平移的同时,点P从EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC.(2)(3)(2)求y与x 之间的函数关系式,并确定自变量x的取值范围(3)是否存在某一时刻,使四边形OAHP面积与ABC面积的比为1324?若存在,求出x的值;若不存在,说明理由(参考数据:1142 12996,1152 13225,1162 13456 或4.42 19.36,4.52 20.25,4.62 21.16),读,如图,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC8cm,BC6cm,C90,EG4cm,EGF90,O是EFG斜边上的中点 如图,若整个EFG从图的位置出发,以1cm/s 的速度沿射线AB方向平移,在EFG 平移的同时,点P从EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC?(2)(3),把握运动变化的形式及过程,x,这是EFG的平移+点P的运动.,思考运动初始状态时几何元素的数量和关系,(1)注意参考数据运用于计算平方、平方根或估算.(2)RtEFGRtABC,FG 3cmRtEGF中,第1问是求当x为何值时,有特殊位置关系OPAC,则建立方程模型求解.,“动”中取“静”:让图形和各个几何量都在特殊位置(OPAC)“静”下来.,O是EFG斜边上的中点当P为FG的中点时,OPEG,又EGAC OPAC,,x FG=31.5(s),当x为1.5s时,OPAC,如图,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC8cm,BC6cm,C90,EG4cm,EGF90,O是EFG斜边上的中点 如图,若整个EFG从图的位置出发,以1cm/s 的速度沿射线AB方向平移,在EFG 平移的同时,点P从EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC.(2)求y与x 之间的函数关系式,并确定自变量x的取值范围(3)(参考数据:1142 12996,1152 13225,1162 13456 或4.42 19.36,4.52 20.25,4.62 21.16),读,(2)第2问是求变量之间的关系,则建立函数模型.,y=S四边形OAHP SAFH SOFP,4、找等量关系,(1)题目明确了是求四边形OAHP的面积,则不需要分类讨论解决.,用面积割补法,“动”中取“静”,为便于求其面积,选择RtAFH的两直角边为底和高.视自变量x为“不变量”,以AE=PG=x为“向导”去求出Rt AFH的两直角边AH和FH.,用含有自变量x的代数式表示相关的几何量,求出相关的常量.,y=S四边形OAHP SAFH SOFP,用含有自变量x的代数式表示相关的几何量,求出相关的常量.,在RtEFG中,由勾股定理得:EF=5cm则AF=X+5EGAH,EFGAFH;AH(x 5),FH(x5),“动”中取“静”,用含有自变量x的代数式表示相关的几何量,求出相关的常量.,过点O作ODFP,垂足为 D 点O为EF中点,ODAC,点OD为 EFG的中位线.OD EG2cm FPFGPG=3x,y=S四边形OAHP SAFH SOFP AHFH ODFP(x5)(x5)2(3x)x2+x+3(0 x3,“动”中取“静”,视自变量x为“不变量”,以PG=x为“向导”去求出OFD的底和高.,如图,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC8cm,BC6cm,C90,EG4cm,EGF90,O是EFG斜边上的中点 如图,若整个EFG从图的位置出发,以1cm/s 的速度沿射线AB方向平移,在EFG 平移的同时,点P从EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC?(2)求y与x 之间的函数关系式,并确定自变量x的取值范围(3)是否存在某一时刻,使四边形OAHP面积与ABC面积的比为1324?若存在,求出x的值;若不存在,说明理由(参考数据:1142 12996,1152 13225,1162 13456 或4.42 19.36,4.52 20.25,4.62 21.16),读,第3问是求特殊值问题,则建立方程模型求解.,6x285x2500,(计算时注意参考数据的运用),解得 x1,,x2,0 x3,,当x(s)时,四边形OAHP面积与ABC面积的比为1324,(舍去),存在.当S四边形OAHP SABC时,如图16,在直角梯形ABCD中,ADBC,AD=6,BC=8,点M是BC的中点点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止设点P,Q运动的时间是t秒(t0)(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围)(2)当BP=1时,求EPQ与梯形ABCD重叠部分的面积(3)随着时间t的变化,线段AD会有一部分被EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由,读,把握运动变化的形式及过程,点M是BC的中点点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止,两个动点引出等边EPQ运动,等边 EPQ的运动特征为:,(1)当0t4时,EPQ的大小随着时间的增加逐渐变大,但PQ边的中点始终是点M,相当于位似变换;,(2)当t4时,随着时间的增加,EPQ的大小始终不变,相当于平移变换.,这样的变换非常新颖,但是涉及的变换又是很简单的.,把握运动变化的形式及过程,思考初始,第1问:在点P从点M向点B运动的过程中,P、Q两点的运动速度相同,y=MP+MQ=t+t=2t,第2问:(1)BP=1有点P到达点B点前、后两种情况,则需分类讨论解决。当BP=1时,有两种情形:,如图2,若点P从点M向点B运动,若点P从点B向点M运动,如图3,谢谢,再见,

    注意事项

    本文(动态几何解题分析示例与思考策略.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开