力学史与方法论.ppt
力学史与方法论,力学专业科技活动周,:力学史,古代力学(公元6世纪以前)静力学的发端 有关运动的观念 生产技术和力学 中世纪的力学(616世纪)阿拉伯 欧洲 中国,:力学史,经典力学的建立(17世纪初18世纪末)动力学 静力学和运动学 固体和流体的物性 应用力学 力学主要分支的建立(19世纪)结构力学和弹性力学 水力学和水动力学 分析力学及其他,:力学史,近代力学(约19001960)固体力学 流体力学 一般力学 现代力学(约1960以后)计算机的冲击 渗透和综合 宏观和微观相结合,古代力学,人类最早的力学知识是从对自然现象的观察和生产劳动中获得的。,古希腊罗马有一种提水壶(amphora),它的外形和力学特点同中国半坡村的汲水壶类似。又如有一种灌溉设备,用短柱或树杈支承一根横木,横木一端挂水桶,另一端系重物,提水时可以省力。中国称这种器械为桔槔(最早记载见庄子天地,约公元前300);在埃及也使用它,称为shadoof,古代力学,静力学的发端 人类在生产劳动和对自然现象观测基础上积累了力学知识,逐渐形成一些概念,然后对一些现象的规律进行描述。这种描述,先是定性的,而后是定量的。中国春秋时期墨翟及其弟子的著作墨经(公元前4前3世纪)中,有涉及力的概念、杠杆平衡、重心、浮力、强度和刚度的叙述。古希腊阿尔库塔斯的著作中也有关于静力学的记录。在亚里士多德的著作中有关于杠杆平衡的见解:距离支点较远的力容易移动重物,因为它画出一个较大的圆。为静力学奠定科学基础的是阿基米德,他在研究杠杆平衡、平面图形重心位置时,先建立一些公设,而后用数学论证的方法导出一些定理,成果之一是用类似求和数再取极限的方法,求出一个抛物线和它们两平行弦线(与抛物线斜交)所围成平面图形面积的重心位置。,古代力学,有关运动的观念 古代对机械运动的描述只限于匀速直线和匀速圆周运动,亚里士多德认为行星轨道应是最完美的曲线圆。托勒密在天文学大成(公元140年左右)的地心说中,认为太阳绕地球作匀速圆周运动,行星又绕太阳作匀速圆周运动;至于运动和力的关系,古代尚无正确的认识。,古代力学,生产技术和力学 古代的建筑工程和器物制造反映出当时的力学水平。阿基米德制造过能牵动船只的机械、车水用的螺旋、表示日月运行的机构,但他认为这不能和纯科学相提并论。在中国对力学的理解只能在技术应用中看到,而理论上的说明始终未能越出定性描述的范围。墨经有专讲守城工事的篇幅,其中给出工事的尺寸,但未涉及力学理论。春秋末期成书的考工记中有不少与力学有关的技术问题的记述,如嵌入车轮辐条的轮毂尺寸的选择,调整磬、钟等乐器的音律等,都符合力学原理。都江堰工程组成一个整体,它经历代整修至今仍在发挥作用。管子地员篇和史记律书记述了中国音律所采用的三分损益律:各音程比(即振动频率比)交错地为三比二、三比四,这反映了中国早期乐器制造方面的理论水平。中国音律还可用战国时期(公元前433)铸成的曾侯乙编钟来说明,每一只钟最低两个频率之比符合三度(比值约1.2),反映了工艺的精巧和对频率比(音律)的深刻理解。古罗马建筑师维特鲁威著有论建筑10卷,讨论了起重机械和建筑的结构形式。罗马帝国在公元100年左右已建成许多水道,现存法国南部的尼姆渡槽长40公里,最高处离地面约48米,结构采用多层半圆石拱的形式。中国张衡制造的地动仪(132)中采用可在地震时丧失平衡的倒立柱子(称为都柱)来带动机构使龙头口中含的铜丸落入下面蟾蜍口中,以指明地震震源的方向。反映中国机械传动水平的还有马钧、祖冲之等人的指南车、记里鼓车,杜诗的水排等,古代力学,中世纪的力学(616世纪),阿拉伯 阿拉伯人在78世纪兴起以后,搜罗和保存了古希腊罗马的典籍,并把许多著作译成阿拉伯文,其中有亚里士多德的物理学、论天,阿基米德的论支承,欧几里得的几何原本,托勒密的天文学大成等。阿拉伯人继承并发展了关于静力学中平衡规律和运动学方面的知识。塔比本库拉的秤书,从运动学观点讨论杠杆平衡条件,他说平衡时的“运动力”由力和运动距离两者决定。哈齐尼的智慧之重一书中记载了多种金属的比重,如银的比重是10.30(今值是10.49),水银13.56(今值13.557),铁7.74(今值7.87)等。天文学家巴塔尼观测了太阳远地点的进动。伊本西那和比鲁尼在注释亚里士多德论天、物理学等典籍中互相问答,对运动的理解有所深化。如阿维森纳定量地计算传给物体的推动力,但总的未脱离亚里士多德的观点;比鲁尼有地球绕太阳运动的思想,提出行星轨道可能是椭圆而不是圆。1213世纪,许多科学著作陆续由阿拉伯文译成拉丁文并传入欧洲。,中世纪的力学(616世纪),欧洲 在这一千多年中,欧洲的科学受到神学的束缚,进展很慢。在和宗教作斗争中,促进了科学的发展。例如法国的J.内莫拉里写了关于重力的证明要点,提出物体系统形状变化时重力是变化的。这个“重力对应于位置”的理论似乎是错的,但实际上,他的重力有重量和它的虚位移之积的涵义,所以他和他的后继者对静力平衡条件的运动学理论作出了贡献。14世纪30年代,英国牛津大学默顿学院以T.布雷德沃丁、W.海特斯伯里等为代表的“计算学派”开始注意到非匀速的运动。他们把运动分为单样的(uniform)和异样的(difform)两种,逐渐有了瞬时速度与平均速度的概念,并证明了默顿定理:运动距离等于平均速度和时间之乘积。后来N.奥尔斯姆在论质的位形(1371)中进而提出速度的强度概念,这是加速度思想的早期形式。法国另一唯名主义者J.比里丹论证物体被抛出时,推动者把冲力(impetus)印刻于物体,因而物体在运动中仍然不断受到推动,而冲力由速度和物质的量两者决定。可见中世纪的学者在努力探讨动力学的规律,但又不敢违背亚里士多德的观点。,中世纪的力学(616世纪),中国 这一千多年中,中国的科学技术按照固有传统发展着。当欧洲科学受到神学束缚时,中国的科学技术总的说来居于世界领先地位。力学科学仍然以和工程技术、生产应用相结合的形式出现,但仍然未能作逻辑分析推理,特别是未能作数学分析。一些至今尚存的建筑物从它们的结构中反映出当时所具备的力学知识:591599年建筑的赵州桥(安济桥),跨度37.4米,采用拱券高只有7米的浅拱;1056年建成的山西应县木塔,采用筒式结构和各种斗拱,900多年来经受过多次地震的考验。利用反推力的带火药的箭是火箭的雏形。宋代李诫的营造法式(1103)指出梁截面广(高)与厚(宽)之比以3:2为好,这个比值符合于在圆截面木料中取出的矩形兼顾抗弯强度和刚度两方面的因素。沈括的梦溪笔谈(1088)记载了频率为1:2的琴弦共振,以及“虚能纳声”即固体弹性波(声波)的空腔效应等力学知识。,经典力学,动力学 伽利略对动力学的主要贡献是他的惯性原理和加速度实验。牛顿运动定律是就单个自由质点而言的,J.le R.达朗伯把它推广到受约束质点的运动。欧拉是继牛顿以后对力学贡献最多的学者。,经典力学,静力学和运动学 静力学和运动学可以看作是动力学的组成部分,但又具有独立的性质。它们是在动力学之前产生的,又可看作是动力学产生的前提。斯蒂文从“永久运动不可能”公设出发论证力的平行四边形法则,他还在前人用运动学观点解释平衡条件的基础上,得到虚位移原理的初步形式,为拉格朗日的分析力学提供依据。罗贝瓦尔证明了一般情况下的平行四边形法则。P.伐里农发展了古希腊静力学的几何学观点,提出力矩的概念和计算方法(1687)并用以研究刚体平衡问题。力系的简化和平衡的系统理论,即静力学的体系的建立则是L.潘索在静力学原理(1803)一书中完成的。书中提出力偶的概念并阐明它的性质,对长期得不到解决的罗贝瓦尔的天秤平衡问题作出解答。在运动学方面,在伽利略提出加速度以后,惠更斯考虑点在曲线运动中的加速度。刚体运动学的研究成果则属于欧拉、潘索。虽然平面图形的位移可分解为平移和转动这一命题早已为帕普斯所知,可是刚体一般运动可分解为平移和转动这一定理,则是M.夏莱在1830年给出的。G.G.科里奥利指出旋转参考系中存在附加加速度(1835)。物理学家A.-M.安培提出“运动学”(法文cinmatique)一词,并建议把运动学作为力学的独立部分(1834)。这些已是19世纪的事了。,经典力学,固体和流体的物性 R.胡克1660年在实验室中发现弹性体的力和变形之间存在着正比关系,他在1676年以字谜形式发表,1678年公布答案。在流体方面,B.帕斯卡指出不可压缩静止流体各向压力(压强)相同。牛顿在自然哲学的数学原理中指出流体阻力与速度差成正比,这是粘性流体剪应力与剪应变之间正比关系的最初形式。1636年M.梅森测量了声音的速度。R.玻意耳于1662年和E.马略特于1676年各自独立地建立气体压力和容积关系的定律。以上这些对物性的了解,为后来弹性力学、粘性流体力学、气体力学等学科的出现作了准备。与此同时,有关材料力学、水力学的奠基工作也已开始。继伽利略之后,马略特在1680年作了梁的弯曲试验,并发现变形与外力的正比关系。丹尼尔第一伯努利和欧拉在弹性梁弯曲问题中假定弯矩和曲率成正比,丹尼尔第一伯努利还在流体力学中导出能量关系式,第一次采用水动力学一词(1738)。,经典力学,应用力学 许多学者的研究工作是和工匠一起进行的。惠更斯和一些钟表匠一起制造钟表。玻意耳和工匠帕潘一起研制水压机。A.帕伦不仅研究梁的弯曲问题,也研究水轮机的效率问题。许多有工程实用意义的方法产生了,如兰哈尔的半圆拱的计算方法,静力学中伐里农的索多边形方法(1687,1725)。力学主要分支的建立(19世纪),力学主要分支的建立(19世纪),结构力学和弹性力学 19世纪中固体方面的力学的发展,除材料力学更趋完善并逐渐发展为杆件系统的结构力学外,主要是数学弹性力学的建立。材料力学、结构力学与当时土木建筑技术、机械制造、交通运输等密切相关,而弹性力学在当时很少有直接的应用背景,主要是为探索自然规律而作的基础研究。,力学主要分支的建立(19世纪),水力学和水动力学 这一时期内有关流体方面的力学发展情况类似于固体方面,在实践的推动下水力学发展出不少经验公式或者半经验公式;另一方面在数学理论上最主要的进展是粘性流体运动基本方程,即纳维斯托克斯方程的建立。纳维继承欧拉的工作,1821年发表不可压缩粘性流体运动方程,其出发点是离散的分子模型。1831年泊松改用粘性流体模型解释并推广了纳维的结果,第一个完整地给出粘性流体的本构关系。G.G.斯托克斯在1845年将离散的分子平均化,采用连续统的模型,假设应力六个分量线性地依赖于变形速度六个分量,得到粘性流体运动基本方程,即现代文献中纳维斯托克斯方程的直角分量形式。在此以前,G.H.L.哈根于1839年和J.-L.-M.泊肃叶于18401841年分别发表了关于管道流动的实验结果和得出的公式,它们成为斯托克斯方程的例证。斯托克斯还曾考虑应力与变形速度之间有一般非线性函数关系的情况,但这种非牛顿流体的研究,无论从理论上或是实用上,只是到了20世纪40年代才有发展。,力学主要分支的建立(19世纪),分析力学及其他 分析力学方面的主要成就是由拉格朗日力学发展为以积分形式变分原理为基础的哈密顿力学。积分形式变分原理的建立对力学的发展,无论在近代或现代,无论在理论上或应用上,都具有重要的意义。积分形式变分原理除W.R.哈密顿在1834年所提出的以外,还有C.F.高斯在1829年提出的最小拘束原理。哈密顿另一贡献是正则方程以及与此相关的正则变换,为力学运动方程的求解提供途径。C.G.J.雅可比进一步指出正则方程与一个偏微分方程的关系。从牛顿、拉格朗日到哈密顿的力学理论构成物理学中的经典力学部分。,近代力学(约19001960),固体力学 由于地震研究的需要,弹性动力学获得迅速的发展。以兰姆命名的在地表脉冲载荷作用下的弹性波传播问题(1904),在1939年由L.卡尼阿特用积分变换法加以处理和推广,解释了侧面波现象,这一方法成为现代弹性动力学的重要基础。层状介质中弹性波传播问题得到了周详的研究,H.杰弗里斯解释了层间折射震相现象。用地震波来探明地球的内部构造和地层分布,需解决困难的反演问题,即从地表观测数据来反推介质性质和震源机制。在弹性静力学方面,解决了有重要意义的孔附近的应力集中问题(G.基尔施,1898;.科洛索夫,1910),并据此发展出用复变函数处理弹性力学的一般方法。航空工程要求解决轻质蒙皮结构的强度、颤振、疲劳和稳定性问题,板壳理论得到空前的发展。卡门提出了薄板大挠度问题(1910),他又和钱学森一起导出非线性的球壳和柱壳的方程,解决了长期存在的线性屈曲理论和实际不符问题,开创了非线性屈曲理论(1939,1941)。后来W.T.科伊特系统地发展了非线性弹性稳定性理论(1945)。J.L.辛格和钱伟长应用张量分析建立了极为普遍的板壳理论,根据量级分析把板壳理论按近似程度分成几十种类型,这是迄今最周详的分析(1940)。钱伟长还提出了用摄动法解决薄板大挠度一类非线性方程的求解问题(1947)。为了寻求难于得出精确解的大量问题的近似解,发展出著名的瑞利里兹法和伽辽金法。在这个背景上发展了各种变分原理,如赫林格-赖斯纳变分原理(1914,1950)和胡海昌-鹫津久一郎变分原理(1954,1955)。在结构力学方面,由于桁架的出现而发展了A.本迪克森的转角位移法(1914)。H.克罗斯提出了巧妙的逐步数值解法力矩分配法(1932),引出了应用较广的松弛法,最后导致有限元法的建立,从而使弹性力学的求解方法出现了重大突破。在有限变形理论方面,M.赖纳在1945年用各向同性张量函数给出了非线性弹性的本构关系,R.S.里夫林给出非线性弹性普遍方程的一些精确解,解释了开尔文效应、坡印亭效应等重要的非线性现象,为后来理性力学学派的复兴作了先导。,近代力学(约19001960),流体力学 在航空、航天事业的推动下,20世纪上半叶流体力学的发展主要在空气动力学方面。,近代力学(约19001960),一般力学 固体力学和流体力学形成力学分支的同时,力学中余下部分也受到航空、航天等技术的促进而继续发展。它们的研究对象是质点、质点系、刚体、多刚体系统等具有有限自由度的离散系统。,现代力学(约1960以后),计算机的冲击 电子计算机自1946年问世以后,计算速度、存储容量和运算能力不断提高,过去力学工作中大量复杂、困难而使人不敢问津的问题,因此有了解决的门路。计算机改变了力学的面貌,也改变了力学家的思想方法。有限差分方法很早被用于强爆炸冲击波计算,还随着出现了人工粘性、激波装配等克服间断性困难的办法。1963年J.E.弗罗姆和F.H.哈洛成功地计算了长方形柱体的绕流问题,给出柱体尾流涡街的形成和随时间的演变过程,并以流体力学中的计算机实验为题作了介绍,这一事件被看作是Link title计算流体力学兴起的标志。弹塑性动力学问题也用差分法作了有效的计算。在计算的实践中还创立了很多新概念,从运用传统的拉格朗日方法和欧拉方法等算法,发展到在差分格子里讨论质量、动量和能量的输运和均衡,建立了所谓离散力学。最令人鼓舞和惊叹的还是60年代有限元法的兴起。有限元法发源于结构力学。一个连续体结构经离散化为杆件(有限元)的组合后,计算机可以轻巧地对这种复杂杆件系统作出计算。有限元法一出现就显示出无比的优越性,它迅速的占领了整个弹性静力学。经过一段关于有限元法的数学基础和收敛性问题的深入讨论之后,认清了有限元法和变分原理的关系。力学家们自觉地以各种变分原理为基础建立了不同形式的杆元、板元、壳元、夹层板元、三维应力元、半无限元、奇异元、杂交元等,发挥了有限元法的巨大威力。随后它又冲出弹性静力学的范围,被广泛应用于弹性动力学、瞬态分析、塑性力学、流场分析,并向传热学、电磁场等非力学领域渗透,显示了极为光辉的前途。,现代力学(约1960以后),渗透和综合 现代力学以远远超过牛顿时代的水平再度向天文学渗透。用磁流体力学研究太阳风在地球磁场中形成的冲击波,用流体力学结合恒星动力学研究密度波,以解释旋涡星系的螺旋结构,以至用相对论流体力学来研究星系的演化。由冯元桢等奠基创建的生物力学就是一个科学渗透的显著例子。多年来的研究使人们认识到:“没有生物力学,就不能很好地了解生理学。”生物力学在考虑生物的形态和组织的基础上,测定生物材料的力学性质,确定本构关系,再结合力学基本原理解决边值问题,这些已在定量生理学、心血管系统临床问题和生物医学工程方面取得不少成就。现代力学又向地球科学渗透,在板块动力学、构造应力场、地震预报以及用反演法阐明震源机制、地层结构和地质材料性质方面进行新的探索,并推动岩石力学的研究。在工程技术方面,如能源开发、环境保护、材料科学、海洋工程、安全防护等综合技术都提出多种多样力学新课题。因此现代力学都必须和别的学科相结合,发展边缘学科解决这些问题。在机器人控制和卫星姿态控制研究中的多刚体系统动力学问题就需要用由力学和控制反馈理论相结合的方法进行研究。,现代力学(约1960以后),宏观和微观相结合 从构成物质的微观粒子(如分子、原子、电子)或者细观结构(如晶粒、分子链)的性质及其相互作用出发来确定材料的宏观性质(如本构关系中的弹性系数、松弛函数、热导率、比热),或者解释变形或破坏的机制等等,从40年代到50年代已积累了大量结果。用统计力学方法处理气体的平衡问题已较成熟,但对液体和固体的问题,以及非平衡过程方面的问题则很差。在40年代用统计力学处理高分子材料的分子网络,得到的贮能函数和用非线性弹性理论所得到的非常接近。这个结果令人鼓舞,但限于弹性范围。1936年G.I.泰勒提出的金属中的位错假说,50年代已被实验证实,并在60年代发展成位错动力学。用位错参数表达的奥罗万应变率公式已经通过“内变量”的桥梁进入宏观的本构关系,沟通了宏观和微观的关系。,