则多元函数微分学-习题.ppt
多元函数微分学 习题课,一、主要内容,平面点集和区域,多元函数概念,多元函数的极限,极 限 运 算,多元函数连续的概念,多元连续函数的性质,全微分概念,偏导数概念,方向导数,全微分的应用,复合函数求导法则,全微分形式的不变性,高阶偏导数,隐函数求导法则,微分法在几何上的应用,多元函数的极值,1、多元函数的极限,说明:,(1)定义中 的方式是任意的;,(2)二元函数的极限运算法则与一元函数类似,存在性,定义,夹逼定理,不存在,特殊路径、两种方式,求法,运算法则、定义验证、夹逼定理,消去致零因子、化成一元极限等,2、多元函数的连续性,3、偏导数概念,定义、求法,偏导数存在与连续的关系,高阶偏导数纯偏导、混合偏导,4、全微分概念,定义,可微的必要条件,可微的充分条件,利用定义验证不可微,偏导数(1)定义:偏导数是函数的偏增量与自变量增量之比的极限.,(2)计算 求多元函数的偏导数实际上是一元函数的微分法问题,对一个变量求导,暂时将其余变量看作常数.,全微分,微分公式:,多元函数连续、可导、可微的关系,5多元复合函数求导法,(1)链式法则 链式法则的实质是函数必须对中间变量求导。依据函数的复合结构,可按照“连线相乘,分线相加”的原则来进行.,设则 是 的复合函数.,称为全导数.,求多元复合函数偏导数的关键在于弄清函数的复合结构,它可用“树形图”来表示.,注意:,6、全微分形式不变性,无论 是自变量 的函数或中间变量 的函数,它的全微分形式是一样的.,7、隐函数的求导法则,公式法,直接法,全微分法,8、微分法在几何上的应用,(1)空间曲线的切线与法平面,()曲面的切平面与法线,求直线、平面的方程,定点(过点)、定向(方向向量、法向量),曲线:参数式,一般式给出,曲面:隐式、显式给出,求隐函数偏导数的方法,10、多元函数的极值,9、方向导数与梯度,定义,计算公式(注意使用公式的条件),梯度的概念向量,梯度与方向导数的关系,极值、驻点、必要条件,充分条件,最值,条件极值,目标函数、约束条件,构造 Lagrange 函数,例1 已知,求,解,二、典型例题,解,例2 已知,求,例4,解,例5,解,于是可得,求,解一,记,则,解二,方程两边对 x 求偏导,例6 设,由轮换对称性,两边取全微分,即,解三,在半径为R的圆的一切内接三角形中,求其面积最大者,解,如图若以 x,y,z 表示三角形的三边所对的圆心角,则,三角形的面积,例8,问题就是求A在条件,下的最大值,x,y,z,记,例11,解,分析:,得,证,设,法线,切平面,即,例12,切平面在三个坐标轴上的截距分别为,故切平面与三个坐标面所围成的四面体的体积为,是一个常量,